SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Faming) srt2:(2022)"

Sökning: WFRF:(Zhang Faming) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Man, et al. (författare)
  • Advances in Tin(II)-Based Perovskite Solar Cells : From Material Physics to Device Performance
  • 2022
  • Ingår i: Small Structures. - : Wiley. - 2688-4062. ; 3:1
  • Forskningsöversikt (refereegranskat)abstract
    • During the past decade, metal halide perovskites are widely studied in the field of optoelectronic materials due to their unique optical and electrical properties. Lead-based halide perovskite solar cells (PSCs), in particular, currently achieve a record efficiency of 25.5%, thus showing strong potential in industrial application. However, toxicity of lead-based perovskite materials possesses great concerns to natural environment and human body. Therefore, the quest for nontoxic and eco-friendly elements to replace lead in perovskites is of great interest. Among all the element choices, tin(II) (Sn2+) is the most promising candidate. As a rising star of lead-free PSCs, Sn-based PSCs have drawn much attention and made promising progress during the past few years. While the rapid oxidation and decomposition of Sn-based perovskites result in poor stability and low efficiency of PSCs. In this review, structural, optoelectronic properties and the critical issues of Sn-based perovskite materials are analyzed. Then, a detailed discussion on the recent methods in solving critical issues of Sn-based perovskite devices, from optimization on materials physics to device performance, is also presented. Finally, remaining challenges and future perspective are given to advance the progression of Sn-based PSCs.
  •  
2.
  • Zhao, Shijing, et al. (författare)
  • Elucidating the reaction pathway of crystalline multi-metal borides for highly efficient oxygen-evolving electrocatalysts
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 10:3, s. 1569-1578
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the fundamental principle of catalytic performance and the mechanism of multimetal-based electrocatalysts is essential for the rational design of advanced renewable energy systems. Here, highly crystalline MMMoB4 (M = Fe, Co) compounds with controllable compositions of multiple active metal atoms and polyacene-type boron networks were synthesized delicately by a one-step high-pressure technique to explore electrocatalytic selectivity and activity. CoFeMoB4 and Co2MoB4 are revealed to be highly active and durable oxygen evolution reaction (OER) electrocatalysts under alkaline conditions. The mutually promotive activation of metals with amorphous clusters and ultra-small grains on the surface are responsible for the enhanced activity of CoFeMoB4. More specifically, Co and Fe coupling in CoFeMoB4 facilitates surface reconstruction into active Co hydroxide and Fe oxyhydroxide, in contrast to Co oxyhydroxide in Co2MoB4 and Fe oxides in Fe2MoB4. Dissolving Mo may provide potential space for adsorbing hydroxyl, and the optimized electronic structure with boron is mainly responsible for the long-term durability. In contrast, Mo atoms are responsible for hydrogen evolution reaction (HER) properties, and the optimized d-band center and density of states at the Fermi level make Co2MoB4 a superior HER catalyst. Our findings provide insight into distinguishing the catalytic pathway of multi-metal borides with improved OER activity and different roles of Mo and Co/Fe in the HER and OER.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy