SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zorzano M.) srt2:(2015-2019)"

Sökning: WFRF:(Zorzano M.) > (2015-2019)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Guzewich, Scott D., et al. (författare)
  • Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm
  • 2019
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:1, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Mars Science Laboratory Curiosity rover observations of the 2018/Mars year 34 global/planet‐encircling dust storm represent the first in situ measurements of a global dust storm with dedicated meteorological sensors since the Viking Landers. The Mars Science Laboratory team planned and executed a science campaign lasting approximately 100 Martian sols to study the storm involving an enhanced cadence of environmental monitoring using the rover's meteorological sensors, cameras, and spectrometers. Mast Camera 880‐nm optical depth reached 8.5, and Rover Environmental Monitoring Station measurements indicated a 97% reduction in incident total ultraviolet solar radiation at the surface, 30K reduction in diurnal range of air temperature, and an increase in the semidiurnal pressure tide amplitude to 40 Pa. No active dust‐lifting sites were detected within Gale Crater, and global and local atmospheric dynamics were drastically altered during the storm. This work presents an overview of the mission's storm observations and initial results.
  •  
4.
  • Korablev, O., et al. (författare)
  • The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
  • 2018
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 214:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
  •  
5.
  •  
6.
  • Romero, M., et al. (författare)
  • TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β
  • 2018
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 20:4, s. 443-454
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive fat accumulation is a major risk factor for the development of type 2 diabetes mellitus and other common conditions, including cardiovascular disease and certain types of cancer. Here, we identify a mechanism that regulates adiposity based on the activator of autophagy TP53INP2. We report that TP53INP2 is a negative regulator of adipogenesis in human and mouse preadipocytes. In keeping with this, TP53INP2 ablation in mice caused enhanced adiposity, which was characterized by greater cellularity of subcutaneous adipose tissue and increased expression of master adipogenic genes. TP53INP2 modulates adipogenesis through autophagy-dependent sequestration of GSK3β into late endosomes. GSK3β sequestration was also dependent on ESCRT activity. As a result, TP53INP2 promotes greater β-catenin levels and induces the transcriptional activity of TCF/LEF transcription factors. These results demonstrate a link between autophagy, sequestration of GSK3β into late endosomes and inhibition of adipogenesis in vivo. © 2018 The Author(s).
  •  
7.
  • Guzewich, Scott D., et al. (författare)
  • The Vertical Dust Profile over Gale Crater, Mars
  • 2017
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 122:12, s. 2779-2792
  • Tidskriftsartikel (refereegranskat)abstract
    • We create a vertically coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory (MSL) Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile.We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the “solsticial pause” in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an “absolute” high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.
  •  
8.
  • Lanza, Nina L., et al. (författare)
  • Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:14, s. 7398-7407
  • Tidskriftsartikel (refereegranskat)abstract
    • The Curiosity rover observed high Mn abundances (>25wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Cockell, Charles S., et al. (författare)
  • Subsurface scientific exploration of extraterrestrial environments (MINAR 5) : analogue science, technology and education in the Boulby Mine, UK
  • 2019
  • Ingår i: International Journal of Astrobiology. - : Cambridges Institutes Press. - 1473-5504 .- 1475-3006. ; 18:2, s. 157-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation.
  •  
15.
  •  
16.
  • Freissinet, C., et al. (författare)
  • Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
  • 2015
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 120:3, s. 495-514
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sample Analysis at Mars (SAM) instrument [Mahaffy et al., 2012] onboard the Mars Science Laboratory (MSL) Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater [Grotzinger et al., 2012]. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration and long-term preservation. This will guide the future search for biosignatures [Summons et al., 2011]. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS), and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of martian chlorine and organic carbon derived from martian sources (e.g. igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets or interplanetary dust particles.
  •  
17.
  • Lasue, J., et al. (författare)
  • Martian Eolian Dust Probed by ChemCam
  • 2018
  • Ingår i: Geophysical Research Letters. - : John Wiley & Sons. - 0094-8276 .- 1944-8007. ; 45:20, s. 10968-10977
  • Tidskriftsartikel (refereegranskat)abstract
    • The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent.
  •  
18.
  •  
19.
  • Mompeán, C., et al. (författare)
  • Prebiotic chemistry in neutral/reduced-alkaline gas-liquid interfaces
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The conditions for the potential abiotic formation of organic compounds from inorganic precursors have great implications for our understanding of the origin of life on Earth and for its possible detection in other environments of the Solar System. It is known that aerosol-interfaces are effective at enhancing prebiotic chemical reactions, but the roles of salinity and pH have been poorly investigated to date. Here, we experimentally demonstrate the uniqueness of alkaline aerosols as prebiotic reactors that produce an undifferentiated accumulation of a variety of multi-carbon biomolecules resulting from high-energy processes (in our case, electrical discharges). Using simulation experiments, we demonstrate that the detection of important biomolecules in tholins increases when plausible and particular local planetary environmental conditions are simulated. A greater diversity in amino acids, carboxylic acids, N-heterocycles, and ketoacids, such as glyoxylic and pyruvic acid, was identified in tholins synthetized from reduced and neutral atmospheres in the presence of alkaline aqueous aerosols than that from the same atmospheres but using neutral or acidic aqueous aerosols.
  •  
20.
  • Cockell, C.S., et al. (författare)
  • Habitability : a review
  • 2016
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 16:1, s. 89-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of “habitability” and a “habitable environment.” An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies
  •  
21.
  • G. Trainer, Melissa, et al. (författare)
  • Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars
  • 2019
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 124:11, s. 3000-3024
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory Curiosity rover measures the chemical composition of major atmospheric species (CO2, N2, 40Ar, O2, and CO) through a dedicated atmospheric inlet. We report here measurements of volume mixing ratios in Gale Crater using the SAM quadrupole mass spectrometer, obtained over a period of nearly 5 years (3 Mars years) from landing. The observation period spans the northern summer of MY 31 and solar longitude (LS) of 175° through spring of MY 34, LS = 12°. This work expands upon prior reports of the mixing ratios measured by SAM QMS in the first 105 sols of the mission. The SAM QMS atmospheric measurements were taken periodically, with a cumulative coverage of four or five experiments per season on Mars. Major observations include the seasonal cycle of CO2, N2, and Ar, which lags approximately 20–40° of LS behind the pressure cycle driven by CO2 condensation and sublimation from the winter poles. This seasonal cycle indicates that transport occurs on faster timescales than mixing. The mixing ratio of O2 shows significant seasonal and interannual variability, suggesting an unknown atmospheric or surface process at work. The O2 measurements are compared to several parameters, including dust optical depth and trace CH4 measurements by Curiosity. We derive annual mean volume mixing ratios for the atmosphere in Gale Crater: CO2 = 0.951 (±0.003), N2 = 0.0259 (±0.0006), 40Ar = 0.0194 (±0.0004), O2 = 1.61 (±0.09) x 10‐3, and CO = 5.8 (±0.8) x 10‐4.
  •  
22.
  • Hernández-Alvarez, María Isabel, et al. (författare)
  • Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease
  • 2019
  • Ingår i: Cell. - : Cell Press. - 0092-8674 .- 1097-4172. ; 177:4, s. 881-895.e17
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Webster, Christopher R., et al. (författare)
  • Background levels of methane in Mars' atmosphere show strong seasonal variations
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 360:6393, s. 1093-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28
Typ av publikation
tidskriftsartikel (16)
konferensbidrag (12)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Martin-Torres, Javie ... (19)
Zorzano Mier, María- ... (12)
Wiens, R.C. (6)
Zorzano, M.-P. (6)
Mangold, N. (5)
Cousin, A. (5)
visa fler...
Forni, O. (4)
Smith, M. D. (4)
Zorzano, Maria Paz (4)
Clark, B (4)
Maurice, S. (4)
Fabre, C. (3)
Anderson, R (3)
Gasnault, O. (3)
McLennan, S. M. (3)
Morris, R. V. (3)
Ming, D. W. (3)
Niles, P. B. (3)
Smith, C. L. (3)
Berger, G (3)
Le Mouélic, S. (3)
Newman, C.E. (3)
Navarro-Gonzalez, R. (3)
Meslin, P.Y. (3)
Johnson, J (2)
Steele, A. (2)
Zorzano, Antonio (2)
Gellert, R. (2)
Grotzinger, J. P. (2)
Rice, M. S. (2)
Altieri, F. (2)
Ammannito, E. (2)
Des Marais, D. J. (2)
Farmer, J. D. (2)
Glavin, D. P. (2)
Raulin, F. (2)
Rettberg, P. (2)
Schwenzer, S. P. (2)
ten Kate, I. L. (2)
Westall, F. (2)
Bridges, N.T. (2)
Blaney, D.L. (2)
Lanza, N.L. (2)
Newsom, H.E. (2)
Conrad, P.G. (2)
Fisk, M.R. (2)
McAdam, A. (2)
Stern, J.C. (2)
Rapin, W. (2)
Ollila, A. (2)
visa färre...
Lärosäte
Luleå tekniska universitet (25)
Göteborgs universitet (1)
Umeå universitet (1)
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
RISE (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Teknik (25)
Naturvetenskap (4)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy