SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zorzano Mier María Paz) srt2:(2022)"

Sökning: WFRF:(Zorzano Mier María Paz) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Konatham, Samuel, 1992- (författare)
  • Atmospheric Species and Spectral Radiation in Terrestrial Exoplanets : Implications for Astrobiology
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The physical properties of the planets and their parent stars are fundamental in the composition of atmospheres and radiative environments, which fundamentally determine their surface temperature and habitability. The atmospheric composition and radiation play a vital role in the emergence of life. This doctoral thesis presents two main results: 1. A method that uses the physical properties of the planets and their parent stars to infer the potential atmospheric compositions of the known exoplanets. For that, fundamental physics concepts and the basics of the kinetic theory of gases are used. Additionally, a new list of potentially habitable exoplanets is presented based on the resulting atmospheric compositions and the criteria that Earth-like atmospheres that can host liquid water should be considered habitable. The presented method also provides a preliminary classification of exoplanets similar to Earth (in terms of atmosphere) and their potential habitability. 2. A study of the impact of the radiation environment on the development and evolution of the human visual system towards optimal use of the available radiation. Human vision's possible evolutionary directions are presented while overcoming the shortcomings in the existing studies. The human visual system is hypothesised to have evolved in conjugation with the prevailing spectral radiation environment for photopic (daytime) and scotopic (night-time). One of the main novelties of this study is the comparison of the human vision bandwidth with the Full Width at half-maximum (FWHM) of the radiation reaching the shallow depths of the ocean, which may suggest that this is optimized for the development of animal sight during the formation of the early proto-visual system. Moreover, the observed maximum absorption wavelength during photopic vision (555nm) correlates with the maximum total energy for a 300 nm vision bandwidth. Furthermore, the analysis of the radiation environment at different solar zenith angles (SZA) during dusk suggests that the scotopic vision evolved to optimize information retrieval during these hours. The work presented in this thesis contributes to perform screening of Earth-like exoplanets and the study of astrobiological or space exploration aspects such as potential habitability, human-like vision, photosynthesis efficiency and evolution of life systems on exoplanets. 
  •  
2.
  • Vakkada Ramachandran, Abhilash, et al. (författare)
  • Numerical heat transfer study of a space environmental testing facility using COMSOL Multiphysics
  • 2022
  • Ingår i: Thermal Science and Engineering Progress. - : Elsevier. - 2451-9049. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental chambers are used to test the expected performance of space instrumentation and to investigate certain processes which are relevant in space or other planetary environments. In this study, a computational model of an existing Martian experimental facility is investigated numerically using COMSOL Multiphysics. For this purpose, we simulate the near surface water cycle under Martian temperature and pressure experimental conditions as tested inside the chamber and we compare the simulations with the experimental data. The model shows good agreement with experiments on the equilibration time scales and thermal gradients. Due to the imposibility to place sensors at multiple locations inside the chamber, we use the model to extrapolate the one-point relative humidity of the experimental data to each grid points in the simulation. This model gives an understanding of the gradient in atmospheric water relative humidity to which the experimental samples such as deliquescent salts and Martian regolith simulants are exposed at different time intervals. The of the performance of HABIT instrument during the tests, of the ESA/IKI ExoMars 2022 robotic mission to Mars, when compared with the model shows the existence of an extra internal heating source of about 1 W which can be attributed to the hydration and deliquescence of the salts exposed to Martian conditions when in contact with atmospheric moisture. In addition, the presented model is used to predict the thermal gradients and understand the time response when the chamber is heated in vacuum conditions. Our analysis shows that for thermal vacuum tests, the chamber will take about 2.5 h to reach the test temperature of 420 K.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy