SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Boekel R.) srt2:(2020-2022)"

Sökning: WFRF:(van Boekel R.) > (2020-2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weigelt, G., et al. (författare)
  • VLTI-MATISSE chromatic aperture-synthesis imaging of eta Carinae's stellar wind across the Br alpha line Periastron passage observations in February 2020
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis similar to 15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, eta Car A, is a luminous blue variable (LBV); the secondary, eta Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV eta Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of eta Car's WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Br alpha imaging of eta Car's distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of eta Car A's stellar windin several spectral channels distributed across the Br alpha 4.052 mu m line (spectral resolving power R similar to 960). Our observations were performed close to periastron passage in February 2020 (orbital phase similar to 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (similar to 14 au). The radius of the faintest outer wind regions is similar to 26 mas (similar to 60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 +/- 0.06 mas (6.54 +/- 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models.
  •  
2.
  • Asensio-Torres, R., et al. (författare)
  • Perturbers : SPHERE detection limits to planetary-mass companions in protoplanetary disks
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of a wide range of substructures such as rings, cavities, and spirals has become a common outcome of high spatial resolution imaging of protoplanetary disks, both in the near-infrared scattered light and in the thermal millimetre continuum emission. The most frequent interpretation of their origin is the presence of planetary-mass companions perturbing the gas and dust distribution in the disk (perturbers), but so far the only bona fide detection has been the two giant planets carving the disk around PDS 70. Here, we present a sample of 15 protoplanetary disks showing substructures in SPHERE scattered-light images and a homogeneous derivation of planet detection limits in these systems. To obtain mass limits we rely on different post-formation luminosity models based on distinct formation conditions, which are critical in the first million years of evolution. We also estimate the mass of these perturbers through a Hill radius prescription and a comparison to ALMA data. Assuming that one single planet carves each substructure in scattered light, we find that more massive perturbers are needed to create gaps within cavities than rings, and that we might be close to a detection in the cavities of RX J1604.3-2130A, RX J1615.3-3255, Sz Cha, HD 135344B, and HD 34282. We reach typical mass limits in these cavities of 3–10 MJup. For planets in the gaps between rings, we find that the detection limits of SPHERE high-contrast imaging are about an order of magnitude away in mass, and that the gaps of PDS 66 and HD 97048 seem to be the most promising structures for planet searches. The proposed presence of massive planets causing spiral features in HD 135344B and HD 36112 are also within SPHERE’s reach assuming hot-start models. These results suggest that the current detection limits are able to detect hot-start planets in cavities, under the assumption that they are formed by a single perturber located at the centre of the cavity. More realistic planet mass constraints would help to clarify whether this is actually the case, which might indicate that perturbers are not the only way of creating substructures.
  •  
3.
  • Chiavassa, A., et al. (författare)
  • The extended atmosphere and circumstellar environment of the cool evolved star VX Sagittarii as seen by MATISSE star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. VX Sgr is a cool, evolved, and luminous red star whose stellar parameters are difficult to determine, which affects its classification.Aims. We aim to spatially resolve the photospheric extent as well as the circumstellar environment.Methods. We used interferometric observations obtained with the MATISSE instrument in the L (3-4 mu m), M (4.5-5 mu m), and N (8-13 mu m) bands. We reconstructed monochromatic images using the MIRA software. We used 3D radiation-hydrodynamics simulations carried out with (COBOLD)-B-5 and a uniform disc model to estimate the apparent diameter and interpret the stellar surface structures. Moreover, we employed the radiative transfer codes OPTIM3D and RADMC3D to compute the spectral energy distribution for the L, M, and N bands, respectively.Results. MATISSE observations unveil, for the first time, the morphology of VX Sgr across the L, M, and N bands. The reconstructed images show a complex morphology with brighter areas whose characteristics depend on the wavelength probed. We measured the angular diameter as a function of the wavelength and showed that the photospheric extent in the L and M bands depends on the opacity through the atmosphere. In addition to this, we also concluded that the observed photospheric inhomogeneities can be interpreted as convection-related surface structures. The comparison in the N band yielded a qualitative agreement between the N-band spectrum and simple dust radiative transfer simulations. However, it is not possible to firmly conclude on the interpretation of the current data because of the difficulty in constraing the model parameters using the limited accuracy of our absolute flux calibration.Conclusions. MATISSE observations and the derived reconstructed images unveil the appearance of VX Sgr's stellar surface and circumstellar environment across a very large spectral domain for the first time.
  •  
4.
  • Keppler, M., et al. (författare)
  • Gap, shadows, spirals, and streamers : SPHERE observations of binary-disk interactions in GG Tauri A
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A large portion of stars is found to be part of binary or higher-order multiple systems. The ubiquity of planets found around single stars raises the question of whether and how planets in binary systems form. Protoplanetary disks are the birthplaces of planets, and characterizing them is crucial in order to understand the planet formation process.Aims. Our goal is to characterize the morphology of the GG Tau A disk, one of the largest and most massive circumbinary disks. We also aim to trace evidence for binary-disk interactions.Methods. We obtained observations in polarized scattered light of GG Tau A using the SPHERE/IRDIS instrument in the H-band filter. We analyzed the observed disk morphology and substructures. We ran 2D hydrodynamical models to simulate the evolution of the circumbinary ring over the lifetime of the disk.Results. The disk and also the cavity and the inner region are highly structured, with several shadowed regions, spiral structures, and streamer-like filaments. Some of these are detected here for the first time. The streamer-like filaments appear to connect the outer ring with the northern arc. Their azimuthal spacing suggests that they may be generated through periodic perturbations by the binary, which tear off material from the inner edge of the outer disk once during each orbit. By comparing observations to hydrodynamical simulations, we find that the main features, in particular, the gap size, but also the spiral and streamer filaments, can be qualitatively explained by the gravitational interactions of a binary with a semimajor axis of similar to 35 au on an orbit coplanar with the circumbinary ring.
  •  
5.
  • Marleau, G.-D., et al. (författare)
  • Accreting protoplanets : Spectral signatures and magnitude of gas and dust extinction at H α
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Accreting planetary-mass objects have been detected at H α, but targeted searches have mainly resulted in non-detections. Accretion tracers in the planetary-mass regime could originate from the shock itself, making them particularly susceptible to extinction by the accreting material. High-resolution (R > 50 000) spectrographs operating at H α should soon enable one to study how the incoming material shapes the line profile.Aims. We calculate how much the gas and dust accreting onto a planet reduce the H α flux from the shock at the planetary surface and how they affect the line shape. We also study the absorption-modified relationship between the H α luminosity and accretion rate.Methods. We computed the high-resolution radiative transfer of the H α line using a one-dimensional velocity–density–temperature structure for the inflowing matter in three representative accretion geometries: spherical symmetry, polar inflow, and magnetospheric accretion. For each, we explored the wide relevant ranges of the accretion rate and planet mass. We used detailed gas opacities and carefully estimated possible dust opacities.Results. At accretion rates of Ṁ ≲ 3 × 10−6 MJ yr−1, gas extinction is negligible for spherical or polar inflow and at most AH α ≲ 0.5 mag for magnetospheric accretion. Up to Ṁ ≈ 3 × 10−4 MJ yr−1, the gas contributes AH α ≲ 4 mag. This contribution decreases with mass. We estimate realistic dust opacities at H α to be κ ~ 0.01–10 cm2 g−1, which is 10–104 times lower than in the interstellar medium. Extinction flattens the LH α –Ṁ relationship, which becomes non-monotonic with a maximum luminosity LH α ~ 10−4 L⊙ towards Ṁ ≈ 10−4 MJ yr−1 for a planet mass ~10 MJ. In magnetospheric accretion, the gas can introduce features in the line profile, while the velocity gradient smears them out in other geometries.Conclusions. For a wide part of parameter space, extinction by the accreting matter should be negligible, simplifying the interpretation of observations, especially for planets in gaps. At high Ṁ, strong absorption reduces the H α flux, and some measurements can be interpreted as two Ṁ values. Highly resolved line profiles (R ~ 105) can provide (complex) constraints on the thermal and dynamical structure of the accretion flow.
  •  
6.
  • Launhardt, R., et al. (författare)
  • ISPY-NACO Imaging Survey for Planets around Young stars : Survey description and results from the first 2.5 years of observations
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The occurrence rate of long-period (a greater than or similar to 50 au) giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process, but also reflects both dynamical re-structuring processes after planet formation as well as possible capture of planets not formed in situ. Direct imaging is currently the only feasible method to detect such wide-orbit planets and constrain their occurrence rate.Aims. We aim to detect and characterise wide-orbit giant planets during and shortly after their formation phase within protoplanetary and debris discs around nearby young stars.Methods. We carry out a large L-band high-contrast direct imaging survey for giant planets around 200 young stars with protoplanetary or debris discs using the NACO instrument at the ESO Very Large Telescope on Cerro Paranal in Chile. We use very deep angular differential imaging observations with typically >60 degrees field rotation, and employ a vector vortex coronagraph where feasible to achieve the best possible point source sensitivity down to an inner working angle of about 100 mas. This paper introduces the NACO Imaging Survey for Planets around Young stars (NACO-ISPY), its goals and strategy, the target list, and data reduction scheme, and presents preliminary results from the first 2.5 survey years.Results. We achieve a mean 5 sigma contrast of Delta L ' = 6.4 +/- 0.1 mag at 150 mas and a background limit of L ' (bg) = 16.5 +/- 0.2 textual-form L bg ' =16.5 +/- 0.2 mag at 1.' ' 5. Our detection probability is 50% for companions with greater than or similar to 8 M-Jup at semi-major axes of 80-200 au and >13 M-Jup at 30-250 au. It thus compares well to the detection space of other state-of-the-art high-contrast imaging surveys. We have already contributed to the characterisation of two new planets originally discovered by VLT/SPHERE, but we have not yet independently discovered new planets around any of our target stars. We have discovered two new close-in low-mass stellar companions around R CrA and HD 193571 and report in this paper the discovery of close co-moving low-mass stellar companions around HD 72660 and HD 92536. Furthermore, we report L ' -band scattered light images of the discs around eleven stars, six of which have never been imaged at L ' -band before.Conclusions. The first 2.5 yr of the NACO-ISPY survey have already demonstrated that VLT/NACO combined with our survey strategy can achieve the anticipated sensitivity to detect giant planets and reveal new close stellar companions around our target stars.
  •  
7.
  • Muro-Arena, G. A., et al. (författare)
  • Shadowing and multiple rings in the protoplanetary disk of HD 139614
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly caused by an inclined (sub-)stellar companion embedded in the disk. Aims. We aim to study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. Methods. We obtained J- and H-band observations that show strong azimuthal asymmetries in polarized scattered light with VLT/SPHERE. In the outer disk, beyond similar to 30 au, a broad shadow spans a range of similar to 240 deg in position angle, in the east. A bright ring at similar to 16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at similar to 34 and similar to 50 au. We created a simple four-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. Results. We find that the shadow on the outer disk covers a range of position angles too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones - or a continuously warped region - to cast this broad shadow on the outer disk. A small misalignment of similar to 4 degrees between adjacent components can reproduce most of the observed shadow features. Conclusions. Multiple misaligned disk zones, potentially mimicking a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust-depleted gap responsible for a dip in the SED.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy