SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Loon A) srt2:(2005-2009)"

Sökning: WFRF:(van Loon A) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sangster, George, et al. (författare)
  • Dutch avifaunal list: taxonomic changes in 2004-2008.
  • 2009
  • Ingår i: Ardea. - : Netherlands Ornithologists' Union. - 0373-2266 .- 2213-1175. ; 97, s. 373-381
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This is the third update on the taxonomy of species and higher taxa on the Dutch List since Voous (1977). It summarizes decisions made by the Commissie Systematiek Nederlandse Avifauna (CSNA) between Jan 2004 and Dec 2008. Changes in this report fall into five categories: (1) the sequence within and among some groups is changed to reflect their phylogenetic relationships (flamingos and grebes, eagles, shanks, gulls, terns, swallows and tits); (2) 20 scientific names are changed due to generic revisions (Aquila pennata, A. fasciata, Chroicocephalus genei, C. philadelphia, C. ridibundus, Hydrocoloeus minutus, Onychoprion anaethetus, Sternula albifrons, Hydroprogne caspia, Megaceryle alcyon, Cecropis daurica, Geokichla sibirica, Cyanistes caeruleus, Lophophanes cristatus, Periparus ater, Poecile montanus, P. palustris, Pastor roseus, Agropsar sturninus, Melospiza melodia); (3) two scientific names replace others presently on the list due to the recognition of extralimital taxa as species (Turdus eunomus, T. atrogularis); (4) one species is added because of a split from a species already on the Dutch List (Sylvia subalpina); (5) two species become monotypic due to the recognition of an extralimital taxon as species (Tarsiger cyanurus, Oenanthe pleschanka).
  •  
3.
  • Boon, Hanneke, 1981-, et al. (författare)
  • Substrate source utilisation in long-term diagnosed type 2 diabetes patients at rest, and during exercise and subsequent recovery
  • 2007
  • Ingår i: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 50:1, s. 103-112
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Disturbances in substrate source metabolism and, more particularly, in fatty acid metabolism, play an important role in the aetiology and progression of type 2 diabetes. However, data on substrate source utilisation in type 2 diabetes are inconclusive. METHODS: [U-(13)C]palmitate and [6,6-(2)H(2)]glucose tracers were used to assess plasma NEFA and glucose oxidation rates and to estimate the use of muscle- and/or lipoprotein-derived triacylglycerol and muscle glycogen. Subjects were ten male patients who had a long-term (7 +/- 1 years) diagnosis of type 2 diabetes and were overweight, and ten matched healthy, male control subjects. Muscle biopsy samples were collected before and after exercise to assess muscle fibre type-specific intramyocellular lipid and glycogen content. RESULTS: At rest and during exercise, the diabetes patients had greater values than the controls for palmitate rate of appearance (Ra) (rest, 2.46 +/- 0.18 and 1.85 +/- 0.20 respectively; exercise, 3.71 +/- 0.36 and 2.84 +/- 0.20 micromol kg(-1) min(-1)) and rate of disappearance (Rd) (rest, 2.45 +/- 0.18 and 1.83 +/- 0.20; exercise, 3.64 +/- 0.35 and 2.80 +/- 0.20 micromol kg(-1) min(-1) respectively). This was accompanied by significantly higher fat oxidation rates at rest and during recovery in the diabetes patients (rest, 0.11 +/- 0.01 in diabetes patients and 0.09 +/- 0.01 in controls; recovery, 0.13 +/- 0.01 and 0.11 +/- 0.01 g/min respectively), despite significantly greater plasma glucose Ra, Rd and circulating plasma glucose concentrations. Furthermore, exercise significantly lowered plasma glucose concentrations in the diabetes patients, as a result of increased blood glucose disposal. CONCLUSION: This study demonstrates that substrate source utilisation in long-term-diagnosed type 2 diabetes patients, in whom compensatory hyperinsulinaemia is no longer present, shifts towards an increase in whole-body fat oxidation rate and is accompanied by disturbances in fat and carbohydrate handling. © 2006 Springer-Verlag.
  •  
4.
  •  
5.
  • Boon, Hanneke, 1981-, et al. (författare)
  • Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients
  • 2008
  • Ingår i: Diabetologia. - Heidelberg : Springer Berlin/Heidelberg. - 0012-186X .- 1432-0428. ; 51:10, s. 1893-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The 5'-AMP-activated protein kinase (AMPK) pathway is intact in type 2 diabetic patients and is seen as a target for diabetes treatment. In this study, we aimed to assess the impact of the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) on both glucose and fatty acid metabolism in vivo in type 2 diabetic patients. METHODS: Stable isotope methodology and blood and muscle biopsy sampling were applied to assess blood glucose and fatty acid kinetics following continuous i.v. infusion of AICAR (0.75 mg kg(-1) min(-1)) and/or NaCl (0.9%) in ten male type 2 diabetic patients (age 64 +/- 2 years; BMI 28 +/- 1 kg/m(2)). RESULTS: Plasma glucose rate of appearance (R (a)) was reduced following AICAR administration, while plasma glucose rate of disappearance (R (d)) was similar in the AICAR and control test. Consequently, blood glucose disposal (R (d) expressed as a percentage of R (a)) was increased following AICAR infusion (p < 0.001). Accordingly, a greater decline in plasma glucose concentration was observed following AICAR infusion (p < 0.001). Plasma NEFA R (a) and R (d) were both significantly reduced in response to AICAR infusion, and were accompanied by a significant decline in plasma NEFA concentration. Although AMPK phosphorylation in skeletal muscle was not increased, we observed a significant increase in acetyl-CoA carboxylase phosphorylation (p < 0.001). CONCLUSIONS/INTERPRETATION: The i.v. administration of AICAR reduces hepatic glucose output, thereby lowering blood glucose concentrations in vivo in type 2 diabetic patients. Furthermore, AICAR administration stimulates hepatic fatty acid oxidation and/or inhibits whole body lipolysis, thereby reducing plasma NEFA concentration. © 2008 The Author(s).
  •  
6.
  • Boon, Hanneke, 1981-, et al. (författare)
  • Substrate Source Use in Older, Trained Males after Decades of Endurance Training
  • 2007
  • Ingår i: Medicine & Science in Sports & Exercise. - Philadelphia, PA : Lippincott Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 39:12, s. 2160-2170
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The purpose of this study was to compare substrate source use in older, long-term exercising, endurance-trained males with sedentary controls. METHODS: [U-C]palmitate and [6,6-H2]glucose tracers were applied to assess plasma free fatty acid (FFA) and glucose oxidation rates, and to estimate muscle- and/or lipoprotein-derived triacylglycerol (TG) and muscle glycogen use. Subjects were 10 long-term exercising, endurance-trained males and 10 sedentary controls (age 57 +/- 1 and 60 +/- 2 yr, respectively). Muscle biopsy samples were collected before and after exercise to assess muscle fiber type-specific intramyocellular lipid and glycogen content. RESULTS: During exercise, plasma palmitate Ra, Rd, and Rox were significantly greater in the trained subjects compared with the controls (Ra: 0.36 +/- 0.02 and 0.25 +/- 0.02; Rd: 0.36 +/- 0.03 and 0.24 +/- 0.02; Rox: 0.31 +/- 0.02 and 0.20 +/- 0.02 mmol.min, respectively, P < 0.01). This resulted in greater plasma FFA and total fat oxidation rates in the trained versus sedentary subjects (P < 0.001). Muscle- and/or lipoprotein-derived TG use contributed 10 +/- 2 and 11 +/- 3% in the trained and control groups, respectively (NS). No significant net changes in muscle fiber lipid content were observed. CONCLUSIONS: Older, endurance-trained males oxidize more fat during moderate-intensity exercise than do sedentary controls. This greater total fat oxidation rate is attributed to a higher plasma FFA release, uptake, and oxidation rate. In contrast, intramyocellular triacylglycerol does not seem to represent a major substrate source during 1 h of moderate-intensity exercise in older trained or sedentary men. ©2007 The American College of Sports Medicine.
  •  
7.
  • Pelsers, M. M. A. L., et al. (författare)
  • Skeletal muscle fatty acid transporter protein expression in type 2 diabetes patients compared with overweight, sedentary men and age-matched, endurance-trained cyclists
  • 2007
  • Ingår i: Acta Physiologica. - Chichester : Wiley-Blackwell. - 1748-1708 .- 1748-1716. ; 190:3, s. 209-219
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Membrane fatty acid transporters can modulate the balance between fatty acid uptake and subsequent storage and/or oxidation in muscle tissue. As such, skeletal muscle fatty acid transporter protein expression could play an important role in the etiology of insulin resistance and/or type 2 diabetes.METHODS: In the present study, fatty acid translocase (FAT/CD36), plasma membrane-bound fatty acid-binding protein (FABPpm) and fatty acid transport protein 1 (FATP1) mRNA and protein expression were assessed in muscle tissue obtained from 10 sedentary, overweight type 2 diabetes patients (60 +/- 2 years), 10 sedentary, weight-matched normoglycemic controls (60 +/- 2 years) and 10 age-matched, endurance trained cyclists (57 +/- 1 years).RESULTS: Both FAT/CD36 and FATP1 mRNA and protein expression did not differ between groups. In contrast, FABPpm mRNA and protein expression were approx. 30-40% higher in the trained men compared with the diabetes patients (P < 0.01) and sedentary controls (P < 0.05).CONCLUSIONS: Skeletal muscle FAT/CD36, FABPpm and FATP1 mRNA and protein expression are not up- or downregulated in a sedentary and/or insulin resistant state. In contrast, FABPpm expression is upregulated in the endurance trained state and likely instrumental to allow greater fatty acid oxidation rates. © 2007 The Authors.
  •  
8.
  • Stellingwerff, Trent, et al. (författare)
  • Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies
  • 2007
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - Bethesda, MD : American Physiological Society. - 0193-1849 .- 1522-1555. ; 292:6, s. E1715-E1723
  • Tidskriftsartikel (refereegranskat)abstract
    • Intramyocellular triacylglycerol (IMTG) has been suggested to represent an important substrate source during exercise. In the present study, IMTG utilization during exercise is assessed through the use of various methodologies. In addition, we identified differences in the use of intramyocellular lipids deposited in the immediate subsarcolemmal (SS) area and those stored in the more central region of the fiber. Contemporary stable isotope technology was applied in combination with muscle tissue sampling before and immediately after 3 h of moderate-intensity cycling exercise (62 ± 2% V̇o2 max) in eight well-trained male cyclists. Continuous infusions with [U-13C]palmitate and [6,6-2H2]glucose were applied to quantify plasma free fatty acid (FFA) and glucose oxidation rates and to estimate whole body IMTG and glycogen use. Both immunohistochemical analyses of oil red O (ORO)-stained muscle cross sections and biochemical triacylglycerol (TG) extraction were performed to assess muscle lipid content. During exercise, plasma FFA, muscle (and/or lipoprotein)-derived TG, plasma glucose, and muscle glycogen oxidation contributed 24 ± 2, 22 ± 3, 11 ± 1, and 43 ± 3% to total energy expenditure, respectively. In accordance, a significant net decline in muscle lipid content was observed following exercise as assessed by ORO staining (67 ± 8%) and biochemical TG extraction (49 ± 8%), and a positive correlation was observed between methods (r = 0.56; P < 0.05). Lipid depots located in the SS area were utilized to a greater extent than the more centrally located depots. This is the first study to show significant use of IMTG as a substrate source during exercise in healthy males via the concurrent implementation of three major methodologies. In addition, this study shows differences in resting subcellular intramyocellular lipid deposit distribution and in the subsequent net use of these deposits during exercise. Copyright © 2007 the American Physiological Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy