SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Fysiologi) "

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Fysiologi)

  • Resultat 1-50 av 4930
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbas, Abdul-Karim, 1959, et al. (författare)
  • Long-term potentiation and insult conditioning in hippocampal slices from young rats: a role for protein synthesis under chemical stress?
  • 2010
  • Ingår i: The 10th Biennial Meeting of the Asia-Pacific Society for Neurochemistry (APSN), October 17-20, 2010, Phuket, Thailand.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We have previously demonstrated that in young rats (12-20-day-old) a sustained long-term potentiation (LTP) can still be induced under conditions of protein synthesis inhibition. It was therefore suggested that sufficient and necessary proteins were already available at the induction time to accomplish LTP maintenance for several hours. Against this background, we have questioned whether hippocampal slices subjected to certain insult conditions might be more sensitive to protein synthesis inhibitors. High K+ concentration has previously been reported to cause an amnesic effect in vivo as well as increasing protein turnover in vitro. We have here employed a K+ insult model under conditions when protein synthesis was inhibited. Recordings were obtained from hippocampal slices for up to 9 h, with or without a cocktail of protein synthesis inhibitors, containing cycloheximide (60 µM) and anisomycin (25 µM). High potassium (50 mM) was transiently applied (5-15 min) shortly after inducing LTP in one of two separate pathways stimulated alternatively. Additionally, an NMDA-receptor antagonist AP5 was supplied after LTP induction to minimize effects related to depolarization-induced glutamate release. Following elimination of all responses for about 30 min, both test and control responses partly recovered. The degree of remaining LTP, defined as test/control ratio, was reduced in both groups of slices (NMDA-independent depotentiation) but was significantly smaller in the drug-treated ones. We are also running an insult model based on oxidative stress, applying hydrogen peroxide (4-5 mM) before or after LTP induction; however, the results are still insufficient for a final conclusion. The potency of cycloheximide, anisomycin or cocktail of the drugs was verified by measurement of incorporation of [3H]-leucine into trichloracetic acid (TCA) precipitable macromolecules. Cycloheximide, anisomycin or cocktail, at concentrations used here caused 95%, 97% and 95% blocking effect, respectively. Our data confirm the idea that sufficient and necessary constitutive proteins are available in the young hippocampus to maintain LTP under conditions of protein synthesis inhibition. They also reveal that LTP in slices subjected to certain insult conditions early after the induction is sensitive to protein synthesis inhibition, probably due to increase in constitutive proteins turnover.
  •  
2.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • NRF2 is essential for adaptative browning of white adipocytes.
  • 2023
  • Ingår i: Redox biology. - : Elsevier. - 2213-2317. ; 68
  • Tidskriftsartikel (refereegranskat)abstract
    • White adipose tissue browning, defined by accelerated mitochondrial metabolism and biogenesis, is considered a promising mean to treat or prevent obesity-associated metabolic disturbances. We hypothesize that redox stress acutely leads to increased production of reactive oxygen species (ROS), which activate electrophile sensor nuclear factor erythroid 2-Related Factor 2 (NRF2) that over time results in an adaptive adipose tissue browning process. To test this, we have exploited adipocyte-specific NRF2 knockout mice and cultured adipocytes and analyzed time- and dose-dependent effect of NAC and lactate treatment on antioxidant expression and browning-like processes. We found that short-term antioxidant treatment with N-acetylcysteine (NAC) induced reductive stress as evident from increased intracellular NADH levels, increased ROS-production, reduced oxygen consumption rate (OCR), and increased NRF2 levels in white adipocytes. In contrast, and in line with our hypothesis, longer-term NAC treatment led to a NRF2-dependent browning response. Lactate treatment elicited similar effects as NAC, and mechanistically, these NRF2-dependent adipocyte browning responses in vitro were mediated by increased heme oxygenase-1 (HMOX1) activity. Moreover, this NRF2-HMOX1 axis was also important for β3-adrenergic receptor activation-induced adipose tissue browning in vivo. In conclusion, our findings show that administration of exogenous antioxidants can affect biological function not solely through ROS neutralization, but also through reductive stress. We also demonstrate that NRF2 is essential for white adipose tissue browning processes.
  •  
3.
  • Solinas, Giovanni, et al. (författare)
  • An adipoincretin effect links adipostasis with insulin secretion.
  • 2024
  • Ingår i: Trends in endocrinology and metabolism: TEM. - 1879-3061. ; 35:6, s. 466-477
  • Forskningsöversikt (refereegranskat)abstract
    • The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.
  •  
4.
  • Lindberg, Frida A., et al. (författare)
  • SLC38A10 knockout mice display a decreased body weight and an increased risk-taking behavior in the open field test
  • 2022
  • Ingår i: Frontiers in Behavioral Neuroscience. - : Frontiers Media S.A.. - 1662-5153. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • The solute carrier 38 family (SLC38) is a family of 11 members. The most commonsubstrate among these are alanine and glutamine, and members are present in a widerange of tissues with important functions for several biological processes, such as liverand brain function. Some of these transporters are better characterized than others and,in this paper, a behavioral characterization of SLC38A10−/− mice was carried out. Abattery of tests for general activity, emotionality, motor function, and spatial memorywere used. Among these tests, the elevated plus maze, Y-maze, marble burying, andchallenging beamwalk have not been tested on the SLC38A10−/− mice previously, whilethe open field and the rotarod tests have been performed by the International MousePhenotyping Consortium (IMPC). Unlike the results from IMPC, the results from this studyshowed that SLC38A10−/− mice spend less time in the wall zone in the open field testthan WT mice, implying that SLC38A10-deficient mice have an increased explorativebehavior, which suggests an important function of SLC38A10 in brain. The present studyalso confirmed IMPC’s data regarding rotarod performance and weight, showing thatSLC38A10−/− mice do not have an affected motor coordination impairment and havea lower body weight than both SLC38A10+/− and SLC38A10+/+ mice. These resultsimply that a complete deficiency of the SLC38A10 protein might affect body weighthomeostasis, but the underlying mechanisms needs to be studied further.
  •  
5.
  • Lindberg, Frida A., et al. (författare)
  • SLC38A10 Deficiency in Mice Affects Plasma Levels of Threonine and Histidine in Males but Not in Females : A Preliminary Characterization Study of SLC38A10(-/-) Mice
  • 2023
  • Ingår i: Genes. - : MDPI. - 2073-4425. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed to fully understand their function and possible role as therapeutic targets. SLC38A10, a poorly characterized solute carrier, is preliminary characterized here. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of the whole brain and found seven differentially expressed genes in SLC38A10-deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in knockout males, whereas no amino acid levels were affected in females, suggesting that SLC38A10(-/-) might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in the brain, liver, lung, muscle, and kidney, but no differences were found. Relative telomere length measurement was also taken, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in the whole brain.
  •  
6.
  •  
7.
  • Deshpande, J, et al. (författare)
  • Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death.
  • 1992
  • Ingår i: Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. - 0014-4819. ; 88:1, s. 91-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultrastructural changes in the pyramidal neurons of the CA1 region of the hippocampus were studied 6 h, 24 h, 48 h, and 72 h following a transient 10 min period of cerebral ischemia induced by common carotid occlusion combined with hypotension. The pyramidal neurons showed delayed neuronal death (DND), i.e. at 24 h and 48 h postischemia few structural alterations were noted in the light microscope, while at 72 h extensive neuronal degeneration was apparent. The most prominent early ultrastructural changes were polysome disaggregation, and the appearance of electron-dense fluffy dark material associated with tubular saccules. Mitochondria and nuclear elements appeared intact until frank neuronal degeneration. The dark material accumulated with extended periods of recirculation in soma and in the main trunks of proximal dendrites, often beneath the plasma membrane, less frequently in the distal dendrites and seldom in spines. Protein synthesis inhibitors (anisomycin, cycloheximide) and an RNA synthesis inhibitor (actinomycin D), administered by intrahippocampal injections or subcutaneously, did not mitigate neuronal damage. Therefore, DND is probably not apoptosis or a form of programmed cell death. We propose that the dark material accumulating in the postischemic period represents protein complexes, possibly aggregates of proteins or internalized plasma membrane fragments, which may disrupt vital cellular structure and functions, leading to cell death.
  •  
8.
  • Izsak, Julia, et al. (författare)
  • Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function
  • 2021
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium salts are used as mood-balancing medication prescribed to patients suffering from neuropsychiatric disorders, such as bipolar disorder and major depressive disorder. Lithium salts cross the blood-brain barrier and reach the brain parenchyma within few hours after oral application, however, how lithium influences directly human neuronal function is unknown. We applied patch–clamp and microelectrode array technology on human induced pluripotent stem cell (iPSC)-derived cortical neurons acutely exposed to therapeutic (<1 mM) and overdose concentrations (>1 mM) of lithium chloride (LiCl) to assess how therapeutically effective and overdose concentrations of LiCl directly influence human neuronal electrophysiological function at the synapse, single-cell, and neuronal network level. We describe that human iPSC-cortical neurons exposed to lithium showed an increased neuronal activity under all tested concentrations. Furthermore, we reveal a lithium-induced, concentration-dependent, transition of regular synchronous neuronal network activity using therapeutically effective concentration (<1 mM LiCl) to epileptiform-like neuronal discharges using overdose concentration (>1 mM LiCl). The overdose concentration lithium-induced epileptiform-like activity was similar to the epileptiform-like activity caused by the GABAA-receptor antagonist. Patch–clamp recordings reveal that lithium reduces action potential threshold at all concentrations, however, only overdose concentration causes increased frequency of spontaneous AMPA-receptor mediated transmission. By applying the AMPA-receptor antagonist and anti-epileptic drug Perampanel, we demonstrate that Perampanel suppresses lithium-induced epileptiform-like activity in human cortical neurons. We provide insights in how therapeutically effective and overdose concentration of lithium directly influences human neuronal function at synapse, a single neuron, and neuronal network levels. Furthermore, we provide evidence that Perampanel suppresses pathological neuronal discharges caused by overdose concentrations of lithium in human neurons.
  •  
9.
  • Molinaro, Angela, et al. (författare)
  • Insulin-Driven PI3K-AKT Signaling in the Hepatocyte Is Mediated by Redundant PI3Kα and PI3Kβ Activities and Is Promoted by RAS.
  • 2019
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 29:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphatidylinositol-3-kinase (PI3K) activity is aberrant in tumors, and PI3K inhibitors are investigated as cancer therapeutics. PI3K signaling mediates insulin action in metabolism, but the role of PI3K isoforms in insulin signaling remains unresolved. Defining the role of PI3K isoforms in insulin signaling is necessary for a mechanistic understanding of insulin action and to develop PI3K inhibitors with optimal therapeutic index. We show that insulin-driven PI3K-AKT signaling depends on redundant PI3Kα and PI3Kβ activities, whereas PI3Kδ and PI3Kγ are largely dispensable. We have also found that RAS activity promotes AKT phosphorylation in insulin-stimulated hepatocytes and that promotion of insulin-driven AKT phosphorylation by RAS depends on PI3Kα. These findings reveal the detailed mechanism by which insulin activates AKT, providing an improved mechanistic understanding of insulin signaling. This improved model for insulin signaling predicts that isoform-selective PI3K inhibitors discriminating between PI3Kα and PI3Kβ should bedosed below their hyperglycemic threshold to achieve isoform selectivity.
  •  
10.
  • Mottahedin, Amin (författare)
  • Developing brain and systemic inflammation: a "Toll-like" link with consequences
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The developing brain is vulnerable to external insults, and perinatal brain injury (PBI) is a major cause of life-long neurological syndromes such as cerebral palsy. Currently, no pharmaceutical intervention is available. Hypoxia/ischemia (HI), infections and inflammation are implicated in the pathogenesis of PBI. However, the crosstalk between these etiologies is not fully understood. Toll-like receptors (TLR) 3 and TLR2 are responsible for sensing viral and bacterial infections and initiating the inflammatory response. The aim of this thesis was to investigate the effect of systemic inflammation induced by activation of these TLRs on neonatal HI brain injury. We demonstrate that intraperitoneal administration of TLR3 and TLR2 ligands (PolyI:C and P3C, respectively) prior to HI increases the brain injury in neonatal mice. PolyI:C and P3C induced neuroinflammation and altered microglial phenotype as assessed by RT-qPCR, multiplex cytokine assay or flow cytometry. PolyI:C also upregulated the pro-apoptotic gene, Fasl, expression and reduced activation of pro-survival signaling molecule Akt. On the other hand, P3C suppressed mitochondrial respiration, a major mechanism of cellular energy production. P3C, unlike other TLR agonists, induced marked infiltration of leukocytes to the cerebral spinal fluid and brain of neonatal mice and rats. Confocal microscopy, Cre recombinase-mediated gene targeting and in vitro cell transmigra-tion assay revealed the choroid plexus as a site of leukocyte entry. RNA sequencing of the choroid plexus followed by transcriptome cluster analysis and Ingenuity Pathway Analysis revealed potential mechanisms of leukocyte infiltration, including a specific chemotaxis signature and cytoskeleton-related pathways. Finally, we show that N-acetylcysteine treatment inhibits TLR2-mediated leukocyte trafficking in vivo and in vitro. To conclude, this thesis describe a TLR-mediated link between systemic inflammation and developing brain with detrimental consequences on HI brain injury, suggesting potential novel therapeutic strategies.
  •  
11.
  •  
12.
  •  
13.
  • Liu, Yawei, et al. (författare)
  • Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE.
  • 2006
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 12:5, s. 518-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1–TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+TGF-beta1+CTLA-4+FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-beta1. Autocrine action of TGF-beta1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.
  •  
14.
  • Bhandage, Amol K., 1988- (författare)
  • Glutamate and GABA signalling components in the human brain and in immune cells
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glutamate and γ-aminobutyric acid (GABA) are the principal excitatory and inhibitory neurotransmitters in the central nervous system (CNS). They both can activate their ionotropic and metabotropic receptors. Glutamate activates ionotropic glutamate receptors (iGlu - AMPA, kainate and NMDA receptors) and GABA activates GABA-A receptors which are modulated by many types of drugs and substances including alcohol. Using real time quantitative polymerase chain reaction, I have shown that iGlu and/or GABA-A receptor subunits were expressed in the hippocampus dentate gyrus (HDG), orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (DL-PFC), central amygdala (CeA), caudate and putamen of the human brain and their expression was altered by chronic excessive alcohol consumption. It indicates that excitatory and inhibitory neurotransmission may have been altered in the brain of human alcoholics. It is possible that changes in one type of neurotransmitter system may drive changes in another. These brain regions also play a role in brain reward system. Any changes in them may lead to changes in the normal brain functions.Apart from the CNS, glutamate and GABA are also present in the blood and can be synthesised by pancreatic islet cells and immune cells. They may act as immunomodulators of circulating immune cells and can affect immune function through glutamate and GABA receptors. I found that T cells from human, rat and mouse lymph nodes expressed the mRNAs and proteins for specific GABA-A receptor subunits. GABA-evoked transient and tonic currents recorded using the patch clamp technique demonstrate the functional GABA-A channel in T cells. Furthermore, the mRNAs for specific iGlu, GABA-A and GABA-B receptor subunits and chloride cotransporters were detected in peripheral blood mononuclear cells (PBMCs) from men, non-pregnant women, healthy and depressed pregnant women. The results indicate that the expression of iGlu, GABA-A and GABA-B receptors is related to gender, pregnancy and mental health and support the notion that glutamate and GABA receptors may modulate immune function. Intra- and interspecies variability exists in the expression and it is further influenced by physiological conditions.
  •  
15.
  • Turanli, Beste, et al. (författare)
  • Drug Repositioning for Effective Prostate Cancer Treatment
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-kappa B inhibition, Wnt/beta - Catenin pathway inhibition, DNMT1 inhibition, and GSK-3 beta inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.
  •  
16.
  • Lindberg, Frida A. (författare)
  • The Biological Importance of the Amino Acid Transporter SLC38A10 : Characterization of a Knockout Mouse
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The biggest group of transporters, the solute carriers (SLCs), has more than 400 members, and about 30% of these are still orphan. In order to decipher their biological function and possible role in disease, there is a need for characterization of these. Around 25% of SLCs are estimated to have amino acids as substrates, including transporters belonging to the SLC38 family. The SLC38 members are sometimes referred to their alternative name: sodium-coupled neutral amino acid transporters (SNATs). One of these transporters, SNAT10 (or SLC38A10), has been characterized as a bidirectional transporter of glutamate, glutamine, alanine and aspartate, as well as having an efflux of serine, and is ubiquitously expressed in the body. However, its biological importance is not yet understood. The aim with this thesis was to characterize a mouse model deficient in SNAT10 protein in order to find the biological importance of this transporter. In paper I, this is done by using a series of behavioral tests, including the open field test, elevated plus maze, rotarod and Y-maze, among others. The SNAT10 knockout mouse was found to have an increased risk-taking behavior, but no motor or spatial working memory impairments. Furthermore, the knockout mouse was found to have a decreased body weight. In paper II, an additional behavioral characterization was performed by using the multivariate concentric square field™ (MCSF) test. The MCSF test is an arena with different zones associated to different behavioral traits, which generates a behavioral profile depending on where the mouse spends its time. The result from this test implies that the SNAT10 deficient mouse has a lower explorative behavior than its wild type littermates. In paper III, gene expression was studied in whole brain and some genes related to cell cycle regulation and p53 expression were found to be differentially expressed in the knockout brain. Additional gene expression was studied in kidney, liver, lung and muscle, but no changes were found. Plasma levels of histidine and threonine were altered in males, but no altered amino acid levels were found in knockout females, suggesting a possible sex-specific effect. These studies together imply that SNAT10 might be involved in processes related to risk-taking and explorative behavior in the open field and MCSF tests. SNAT10 deficiency also affected amino acid levels in plasma, indicating a disrupted amino acid homeostasis.
  •  
17.
  • Sukhovey, Yurij G., et al. (författare)
  • Functional Conjugation of the Different Regulatory Responses to the Stress Stimuli in Healthy Human Subjects
  • 2016
  • Ingår i: Open Journal of Applied Sciences. - : Scientific Research Publishing, Inc.. - 2165-3917 .- 2165-3925. ; 6, s. 489-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Present article discusses the physiological mechanisms of the state employees adaptation duringactive training in temporary groups. It is suggested that adaptive mechanisms to adverse effectsmay be studied basing on the concept of functional isomorphism of the psychic and immune systems.Adaptive mechanisms were studied through the monitoring of the stress factors’ impact upon thelaw enforcement officers when training outside the places of permanent deployment. The specificpurpose of present study was to evaluate the physiological indicators of the psychic, immune andendocrine systems dynamics at different stages of adaptation of the live organism to a stressfulsituation, hoping to get better insight into possible relations between psychic and immune domains.Through monitoring of the dynamics of the endocrine and immune responses to the psychic stimuli,it was possible to correlate the stages of the stress onset to the phases of specific immune reactions.Strong correlations between the parameters characterizing activation of the psychic and immuneresponses support the hypothesis of the presence of “strong cooperation” between psychic andimmune domains. It supports earlier hypothesis that we are monitoring
  •  
18.
  •  
19.
  • Hogenkamp, Pleunie S, et al. (författare)
  • Sweet taste perception not altered after acute sleep deprivation in healthy young men.
  • 2013
  • Ingår i: Somnologie : Schlafforschung und Schlafmedizin = Somnology : sleep research and sleep medicine. - : Springer Science and Business Media LLC. - 1432-9123 .- 1439-054X. ; 17:2, s. 111-114
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesized that acutely sleep-deprived participants would rate ascending concentrations of sucrose as more intense and pleasant, than they would do after one night of normal sleep. Such a finding would offer a potential mechanism through which acute sleep loss could promote overeating in humans.
  •  
20.
  • Lindberg, Frida A, et al. (författare)
  • SLC38A10 deficiency in male mice affect plasma levels of threonine and histidine
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed in order to fully understand their function and possible role as therapeutic targets. SLC38 is a family of amino acid transporters, commonly referred to as SNATs, consisting of 11 members. The tenth member, SLC38A10, is one of the least characterized members and is the focus of this study. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of whole brain and found seven differentially expressed genes in SLC38A10 deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in males, while no amino acids were altered in females, suggesting that SLC38A10-/- might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in brain, liver, lung, muscle and kidney, but no differences were found. A relative telomere length measurement was also made, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in whole brain. 
  •  
21.
  •  
22.
  • Adermark, Louise, 1974, et al. (författare)
  • Weight gain and neuroadaptations elicited by high fat diet depend on fatty acid composition.
  • 2021
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 1873-3360 .- 0306-4530. ; 126
  • Tidskriftsartikel (refereegranskat)abstract
    • Overconsumption of food is a major health concern in the western world. Palatable food has been shown to alter the activity of neural circuits, and obesity has been linked to alterations in the connectivity between the hypothalamus and cortical regions involved in decision-making and reward processing, putatively modulating the incentive value of food. Outlining neurophysiological adaptations induced by dietary intake of high fat diets (HFD) is thus valuable to establish how the diet by itself may promote overeating. To this end, C57BL/6 mice were fed HFD rich in either saturated fatty acids (HFD-S) or polyunsaturated fatty acids (HFD-P), or a low-fat control diet (LFD) for four weeks. Food and energy intake were monitored and ex vivo electrophysiology was employed to assess neuroadaptations in lateral hypothalamus (LH) and corticostriatal circuits, previously associated with food intake. In addition, the effects of dietary saturated and polyunsaturated fatty acids on the gene expression of NMDA, AMPA and GABAA receptor subunits in the hypothalamus were investigated. Our data shows that mice fed HFD-P had increased daily food and energy intake compared with mice fed HFD-S or LFD. However, this increase in energy intake had no obesogenic effects. Electrophysiological recordings demonstrated that HFD-P had a selective effect on glutamatergic neurotransmission in the LH, which was concomitant with a change in mRNA expression of AMPA receptor subtypes Gria1, Gria3 and Gria4, with no effect on the mRNA expression of NMDA receptor subtypes or GABAA receptor subtypes. Furthermore, while synaptic output from corticostriatal subregions was not significantly modulated by diet, synaptic plasticity in the form of long-term depression (LTD) was impaired in the dorsomedial striatum of mice fed HFD-S. In conclusion, this study suggests that the composition of fatty acids in the diet not only affects weight gain, but may also modulate neuronal function and plasticity in brain regions involved in food intake.
  •  
23.
  • Andersson, Ingemar, 1950- (författare)
  • Rehabilitering vid långvarig smärta
  • 2010. - 2
  • Ingår i: Smärta och smärtbehandling. - Stockholm : Liber. - 9789147084135 ; , s. 401-409
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
24.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • Adiponectin stimulates Sca1+CD34−-adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue
  • 2024
  • Ingår i: Metabolism. - : Elsevier. - 0026-0495 .- 1532-8600. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The adipocyte hormone adiponectin improves insulin sensitivity and there is an inverse correlation between adiponectin levels and type-2 diabetes risk. Previous research shows that adiponectin remodels the adipose tissue into a more efficient metabolic sink. For instance, mice that overexpress adiponectin show increased capacity for hyperplastic adipose tissue expansion as evident from smaller and metabolically more active white adipocytes. In contrast, the brown adipose tissue (BAT) of these mice looks “whiter” possibly indicating reduced metabolic activity. Here, we aimed to further establish the effect of adiponectin on adipose tissue expansion and adipocyte mitochondrial function as well as to unravel mechanistic aspects in this area. Methods: Brown and white adipose tissues from adiponectin overexpressing (APN tg) mice and littermate wildtype controls, housed at room and cold temperature, were studied by histological, gene/protein expression and flow cytometry analyses. Metabolic and mitochondrial functions were studied by radiotracers and Seahorse-based technology. In addition, mitochondrial function was assessed in cultured adiponectin deficient adipocytes from APN knockout and heterozygote mice. Results: APN tg BAT displayed increased proliferation prenatally leading to enlarged BAT. Postnatally, APN tg BAT turned whiter than control BAT, confirming previous reports. Furthermore, elevated adiponectin augmented the sympathetic innervation/activation within adipose tissue. APN tg BAT displayed reduced metabolic activity and reduced mitochondrial oxygen consumption rate (OCR). In contrast, APN tg inguinal white adipose tissue (IWAT) displayed enhanced metabolic activity. These metabolic differences between genotypes were apparent also in cultured adipocytes differentiated from BAT and IWAT stroma vascular fraction, and the OCR was reduced in both brown and white APN heterozygote adipocytes. In both APN tg BAT and IWAT, the mesenchymal stem cell-related genes were upregulated along with an increased abundance of Lineage−Sca1+CD34− “beige-like” adipocyte precursor cells. In vitro, the adiponectin receptor agonist Adiporon increased the expression of the proliferation marker Pcna and decreased the expression of Cd34 in Sca1+ mesenchymal stem cells. Conclusions: We propose that the seemingly opposite effect of adiponectin on BAT and IWAT is mediated by a common mechanism; while reduced adiponectin levels are linked to lower adipocyte OCR, elevated adiponectin levels stimulate expansion of adipocyte precursor cells that produce adipocytes with intrinsically higher metabolic rate than classical white but lower metabolic rate than classical brown adipocytes. Moreover, adiponectin can modify the adipocytes' metabolic activity directly and by enhancing the sympathetic innervation within a fat depot. 
  •  
25.
  •  
26.
  • Nowak, Christoph, 1986- (författare)
  • Insulin Resistance : Causes, biomarkers and consequences
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The worldwide increasing number of persons affected by largely preventable diseases like diabetes demands better prevention and treatment. Insulin is required for effective utilisation of circulating nutrients. Impaired responsiveness to insulin (insulin resistance, IR) is a hallmark of type 2 diabetes and independently raises the risk of heart attack and stroke. The pathophysiology of IR is incompletely understood. High-throughput measurement of large numbers of circulating biomarkers may provide new insights beyond established risk factors.The aims of this thesis were to (i) use proteomics, metabolomics and genomics methods in large community samples to identify biomarkers of IR; (ii) assess biomarkers for risk prediction and insights into aetiology and consequences of IR; and (iii) use Mendelian randomisation analysis to assess causality.In Study I, analysis of 80 circulating proteins in 70-to-77-year-old Swedes identified cathepsin D as a biomarker for IR and highlighted a tentative causal effect of IR on raised plasma tissue plasminogen activator levels. In Study II, nontargeted fasting plasma metabolomics was used to discover 52 metabolites associated with glycaemic traits in non-diabetic 70-year-old men. Replication in independent samples of several thousand persons provided evidence for a causal effect of IR on reduced plasma oleic acid and palmitoleic acid levels. In Study III, nontargeted metabolomics in plasma samples obtained at three time points during an oral glucose challenge in 70-year-old men identified associations between a physiologic measure of IR and concentration changes in medium-chain acylcarnitines, monounsaturated fatty acids, bile acids and lysophosphatidylethanolamines. Study IV provided evidence in two large longitudinal cohorts for causal effects of type 2 diabetes and impaired insulin secretion on raised coronary artery disease risk.In conclusion, the Studies in this thesis provide new insights into the pathophysiology and adverse health consequences of IR and illustrate the value of combining traditional epidemiologic designs with recent molecular techniques and bioinformatics methods. The results provide limited evidence for the role of circulating proteins and small molecules in IR and require replication in separate studies and validation in experimental designs.
  •  
27.
  • Oreland, Sadia, et al. (författare)
  • Short- and long-term consequences of different early environmental conditions on central immunoreactive oxytocin and arginine vasopressin levels in male rats
  • 2010
  • Ingår i: Neuropeptides. - : Elsevier BV. - 0143-4179 .- 1532-2785. ; 44:5, s. 391-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies have provided evidence for an important role for the neuropeptides oxytocin (OT) and arginine vasopressin (AVP) in establishment of social behaviour early in life, such as mother-pup interactions. However, there are few reports examining the consequences of early-life experiences on OT and AVP in male offspring. We have used the maternal separation (MS) model to study the effect of different early environmental conditions in rats. The purpose was to study OT and AVP in rats subjected to prolonged daily MS (360 min, MS360), short daily MS (15 min, MS15) and conventional animal facility rearing (AFR) during postnatal days 1-21. In addition, the influence of the presence or absence of littermates during MS, i.e. litter-wise (l) or individual (i) MS, was assessed. The immunoreactive (ir) peptide levels were measured in the hypothalamus, amygdala and pituitary gland of 3 and 10 weeks old male rats. Assessment in 3-week-old rats revealed that MS15 was associated with low ir OT levels in the hypothalamus and amygdala and high levels in the pituitary gland compared with the MS360 and AFR condition. In the amygdala, differences between groups were also detected in adulthood. MS studies commonly use either MS15 or AFR as a control for prolonged MS. The present results show differences in MS360 rats as compared to MS15 but not AFR rats. Consequently, comparisons between prolonged MS with either short periods of MS or AFR will generate divergent results, hence, making the outcome of MS difficult to compare between studies. Moreover, the different early environments had no effect on ir AVP levels. In conclusion, OT in the amygdala was most sensitive to MS. Besides both short- and long-term consequences, distinct effects were seen after litter and individual separation, respectively. We propose that environmentally induced alterations in OT transmission due to disrupted mother-pup interactions early in life may cause altered susceptibility to challenges later in life.
  •  
28.
  • Turczynska, Karolina, et al. (författare)
  • Regulation of vascular smooth muscle mechanotransduction by microRNAs and L-type calcium channels.
  • 2013
  • Ingår i: Communicative & Integrative Biology. - : Informa UK Limited. - 1942-0889. ; 6:1, s. 22278-22278
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenotype of smooth muscle cells is regulated by multiple environmental factors including mechanical forces. Mechanical stretch of mouse portal veins ex vivo has been shown to promote contractile differentiation by activation of the Rho-pathway, an effect that is dependent on the influx of calcium via L-type calcium channels. MicroRNAs have recently been demonstrated to play a significant role in the control of smooth muscle phenotype and in a recent report we investigated their role in vascular mechanosensing. By smooth muscle specific deletion of Dicer, we found that microRNAs are essential for smooth muscle differentiation in response to stretch by regulating CamKIIδ and L-type calcium channel expression. Furthermore, we suggest that loss of L-type calcium channels in Dicer KO is due to reduced expression of the smooth muscle-enriched microRNA, miR-145, which targets CamKIIδ. These results unveil a novel mechanism for miR-145 dependent regulation of smooth muscle phenotype.
  •  
29.
  • Zhang, Yuehui, et al. (författare)
  • Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. : Deciphering the role of uterine AR in PCOS during early pregnancy
  • 2021
  • Ingår i: Journal of molecular medicine (Berlin, Germany). - : Springer Science and Business Media LLC. - 1432-1440 .- 0946-2716. ; 99, s. 1427-1446
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. KEY MESSAGES: The proper regulation of uterine androgen receptor (AR) contributes to a normal pregnancy process, whereas the aberrant regulation of uterine AR might be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related complications. In the current study, we found that during normal rat pregnancy there is a stage-dependent decrease in AR abundance in the gravid uterus and that this is correlated with the differential expression of the endometrial receptivity and decidualization genes Spp1, Prl, Igfbp1, and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS) or to DHT alone show elevated uterine AR protein abundance and implantation failure related to the aberrant expression of genes involved in endometrial receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from pre-implantation, effectively prevents DHT + INS-induced defects in endometrial receptivity and decidualization gene expression, restores uterine mitochondrial homeostasis, and increases the pregnancy rate and the numbers of viable fetuses. This study adds to our understanding of the mechanisms underlying poor pregnancy outcomes in PCOS patients and the possible therapeutic use of anti-androgens, including flutamide, after spontaneous conception.
  •  
30.
  • Birnir, Bryndis, et al. (författare)
  • The impact of sub-cellular location and intracellular neuronal proteins on properties of GABA(A) receptors
  • 2007
  • Ingår i: Current Pharmaceutical Design. - : Bentham Science Publishers Ltd.. - 1381-6128 .- 1873-4286. ; 13:31, s. 3169-3177
  • Tidskriftsartikel (refereegranskat)abstract
    • Most studies of GABA(A) receptor accessory proteins have focused on trafficking, clustering and phosphorylation state of the channel-forming subunits and as a result a number of proteins and mechanisms have been identified that can influence the GABA(A) channel expression and function in the cell plasma membrane. In the light of a growing list of intracellular and transmembrane neuronal proteins shown to affect the fate, function and pharmacology of the GABA(A) receptors in neurons, the concept of what constitutes the native GABA(A) receptor complex may need to be re-examined. It is perhaps more appropriate to consider the associated proteins or some of them to be parts of the receptor channel complex in the capacity of ancillary proteins. Here we highlight some of the effects the intracellular environment has on the GABA-activated channel function and pharmacology. The studies demonstrate the need for co-expression of accessory proteins with the GABA(A) channel-forming subunits in heterologous expression systems in order to obtain the full repertoire of GABA(A) receptors characteristics recorded in the native neuronal environment. Further studies e.g. on gene-modified animal models are needed for most of the accessory proteins to establish their significance in normal physiology and in pathophysiology of neurological and psychiatric diseases. The challenge remains to elucidate the effects that the accessory proteins and processes (e.g. phosphorylation) plus the sub-cellular location have on the "fine-tuning" of the functional and pharmacological properties of the GABA(A) receptor channels.
  •  
31.
  • Eghbali, M, et al. (författare)
  • Hippocampal GABA(A) channel conductance increased by diazepam
  • 1997
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 388:6637, s. 71-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Benzodiazepines, which are widely used clinically for relief of anxiety and for sedation, are thought to enhance synaptic inhibition in the central nervous system by increasing the open probability of chloride channels activated by the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Here we show that the benzodiazepine diazepam can also increase the conductance of GABAA channels activated by low concentrations of GABA (0.5 or 5 microM) in rat cultured hippocampal neurons. Before exposure to diazepam, chloride channels activated by GABA had conductances of 8 to 53pS. Diazepam caused a concentration-dependent and reversible increase in the conductance of these channels towards a maximum conductance of 70-80 pS and the effect was as great as 7-fold in channels of lowest initial conductance. Increasing the conductance of GABAA channels tonically activated by low ambient concentrations of GABA in the extracellular environment may be an important way in which these drugs depress excitation in the central nervous system. That any drug has such a large effect on single channel conductance has not been reported previously and has implications for models of channel structure and conductance.
  •  
32.
  • Lindquist, Catarina, et al. (författare)
  • Extrasynaptic GABA(A) channels activated by THIP are modulated by diazepam in CA1 pyramidal neurons in the rat brain hippocampal slice
  • 2003
  • Ingår i: Molecular and Cellular Neuroscience. - 1044-7431 .- 1095-9327. ; 24:1, s. 250-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-channel currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) in cell-attached patches on CA1 pyramidal neurons in the rat hippocampal slice preparation. THIP activated GABA(A) channels after a delay that was concentration-dependent and decreased by 1 muM diazepam. The currents showed outward rectification. Channels activated at depolarized 40 mV relative to the chloride reversal potential had low conductance (<40 pS) but the conductance increased with time, resulting in high-conductance channels (>40 pS). The average maximal-channel conductances for 2 and 100 muM THIP were 59 and 62 pS (-Vp = 40 mV), respectively, whereas in 2 muM THIP plus 1 muM diazepam, it was 71 pS. The results show that in hippocampal neurons THIP activates channels with characteristics similar to those of channels activated by low concentrations (0.5-5 AM) of GABA. The increase in the inhibitory conductance with membrane depolarization permits gradation of the shunt pathway relative to the level of the excitatory input. (C) 2003 Elsevier Science (USA). All rights reserved.
  •  
33.
  •  
34.
  • Wallén-Mackenzie, Åsa, et al. (författare)
  • Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.
  • 2009
  • Ingår i: The Journal of neuroscience : the official journal of the Society for Neuroscience. - 1529-2401 .- 0270-6474. ; 29:7, s. 2238-51
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
  •  
35.
  • Hallvig, D., et al. (författare)
  • Sleepy driving on the real road and in the simulator - A comparison
  • 2013
  • Ingår i: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575 .- 1879-2057. ; 50, s. 44-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Sleepiness has been identified as one of the most important factors contributing to road crashes. However, almost all work on the detailed changes in behavior and physiology leading up to sleep related crashes has been carried out in driving simulators. It is not clear, however, to what extent simulator results can be generalized to real driving. This study compared real driving with driving in a high fidelity, moving base, driving simulator with respect to driving performance, sleep related physiology (using electroencephalography and electrooculography) and subjective sleepiness during night and day driving for 10 participants. The real road was emulated in the simulator. The results show that the simulator was associated with higher levels of subjective and physiological sleepiness than real driving. However, both for real and simulated driving, the response to night driving appears to be rather similar for subjective sleepiness and sleep physiology. Lateral variability was more responsive to night driving in the simulator, while real driving at night involved a movement to the left in the lane and a reduction of speed, both of which effects were absent in the simulator. It was concluded that the relative validity of simulators is acceptable for many variables, but that in absolute terms simulators cause higher sleepiness levels than real driving. Thus, generalizations from simulators to real driving must be made with great caution.
  •  
36.
  • Hammarlund, Maria, et al. (författare)
  • The selectivealpha7 nicotinic acetylcholine receptor agonist AR‑R17779 does not affect ischemia-reperfusion brain injury in mice.
  • 2021
  • Ingår i: Bioscience reports. - 1573-4935. ; 41:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation plays a central role in stroke-induced brain injury. The alpha7 nicotinic acetylcholine receptor (α7nAChR) can modulate immune responses in both the periphery and the brain. The aims of this study were to investigate α7nAChR expression in different brain regions and evaluate the potential effect of the selective α7nAChR agonist AR-R17779 on ischemia-reperfusion brain injury in mice. Droplet digital PCR (ddPCR) was used to evaluate the absolute expression of the gene encoding α7nAChR (Chrna7) in hippocampus, striatum, thalamus and cortex in adult, naïve mice. Mice subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery were treated with α7nAChR agonist AR-R17779 (12 mg/kg) or saline once daily for five days. Infarct size and microglial activation seven days after tMCAO were analyzed using immunohistochemistry. Chrna7 expression was found in all analyzed brain regions in naïve mice, with the highest expression in cortex and hippocampus. At sacrifice, white blood cell count was significantly decreased in AR-R17779 treated mice compared with saline controls in the sham groups, although, no effect was seen in the tMCAO groups. Brain injury and microglial activation was evident seven days after tMCAO. However, no difference was found between mice treated with saline or AR‑R17779. In conclusion, α7nAChR expression varies in different brain regions and, despite a decrease in white blood cells in sham mice receiving AR-R17779, this compound does not affect stroke-induced brain injury.
  •  
37.
  • Venkatakrishnan, Vignesh, 1987, et al. (författare)
  • Novel inhibitory effect of galectin-3 on the respiratory burst induced by Staphylococcus aureus in human neutrophils
  • 2023
  • Ingår i: Glycobiology. - : OXFORD UNIV PRESS INC. - 1460-2423 .- 0959-6658. ; 33:6, s. 503-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the responders to microbial invasion, neutrophils represent the earliest and perhaps the most important immune cells that contribute to host defense with the primary role to kill invading microbes using a plethora of stored anti-microbial molecules. One such process is the production of reactive oxygen species (ROS) by the neutrophil enzyme complex NADPH-oxidase, which can be assembled and active either extracellularly or intracellularly in phagosomes (during phagocytosis) and/or granules (in the absence of phagocytosis). One soluble factor modulating the interplay between immune cells and microbes is galectin-3 (gal-3), a carbohydrate-binding protein that regulates a wide variety of neutrophil functions. Gal-3 has been shown to potentiate neutrophil interaction with bacteria, including Staphylococcus aureus, and is also a potent activator of the neutrophil respiratory burst, inducing large amounts of granule-localized ROS in primed cells. Herein, the role of gal-3 in regulating S. aureus phagocytosis and S. aureus-induced intracellular ROS was analyzed by imaging flow cytometry and luminol-based chemiluminescence, respectively. Although gal-3 did not interfere with S. aureus phagocytosis per se, it potently inhibited phagocytosis-induced intracellular ROS production. Using the gal-3 inhibitor GB0139 (TD139) and carbohydrate recognition domain of gal-3 (gal-3C), we found that the gal-3-induced inhibitory effect on ROS production was dependent on the carbohydrate recognition domain of the lectin. In summary, this is the first report of an inhibitory role of gal-3 in regulating phagocytosis-induced ROS production.
  •  
38.
  • Wernstedt Asterholm, Ingrid, 1978, et al. (författare)
  • Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling.
  • 2014
  • Ingår i: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 20:1, s. 103-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic inflammation constitutes an important link between obesity and its pathophysiological sequelae. In contrast to the belief that inflammatory signals exert a fundamentally negative impact on metabolism, we show that proinflammatory signaling in the adipocyte is in fact required for proper adipose tissue remodeling and expansion. Three mouse models with an adipose tissue-specific reduction in proinflammatory potential were generated that display a reduced capacity for adipogenesis in vivo, while the differentiation potential is unaltered in vitro. Upon high-fat-diet exposure, the expansion of visceral adipose tissue is prominently affected. This is associated with decreased intestinal barrier function, increased hepatic steatosis, and metabolic dysfunction. An impaired local proinflammatory response in the adipocyte leads to increased ectopic lipid accumulation, glucose intolerance, and systemic inflammation. Adipose tissue inflammation is therefore an adaptive response that enables safe storage of excess nutrients and contributes to a visceral depot barrier that effectively filters gut-derived endotoxin.
  •  
39.
  • Arner, Anders, et al. (författare)
  • Cross-bridge cycling in smooth muscle: a short review
  • 1998
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772. ; 164:4, s. 363-372
  • Tidskriftsartikel (refereegranskat)abstract
    • This review is focused on the cross-bridge interaction of the organized contractile system of smooth muscle fibres. By using chemically skinned preparations the different enzymatic reactions of actin-myosin interaction have been associated with mechanical events. A rigor state has been identified in smooth muscle and the binding of ATP causes dissociation of rigor cross-bridges at rates slightly slower than those in skeletal muscle, but fast enough not to be rate-limiting for cross-bridge turn over in the muscle fibre. The release of inorganic phosphate (Pi) is associated with force generation, and this process is not rate-limiting for maximal shortening velocity (Vmax) in the fully activated muscle. The binding of ADP to myosin is strong in the smooth muscle contractile system, a property that might be associated with the generally slow cross-bridge turn over. Both force and Vmax are modulated by the extent of myosin light chain phosphorylation. Low levels of activation are considered to be associated with the recruitment of slowly cycling dephosphorylated cross-bridges which reduces shortening velocity. The attachment of these cross-bridge states in skinned smooth muscles can be regulated by cooperative mechanisms and thin filament associated systems. Smooth muscles exhibit a large diversity in their Vmax and the individual smooth muscle tissue can alter its Vmax under physiological conditions. The diversity and the long-term modulation of phenotype are associated with changes in myosin heavy and light chain isoform expression.
  •  
40.
  • Arner, Anders, et al. (författare)
  • Effects of Ca2+ on force-velocity characteristics of normal and hypertrophic smooth muscle of the rat portal vein
  • 1985
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772. ; 124:4, s. 525-533
  • Tidskriftsartikel (refereegranskat)abstract
    • Portal hypertension was induced in rats by partial ligation of the hepatic branches of the portal vein. After 5 days of hypertension the portal veins were taken out and mounted for isometric and quick-release experiments. Portal veins from sham-operated normal rats served as controls. The ligated veins had an increased cross-sectional area, indicating smooth-muscle hypertrophy. Although the absolute magnitude of active force of these veins was increased, the active force per cross-sectional area was decreased, indicating an alteration in the properties of the contractile system. No difference in the Ca2+ concentration-response relations to K+-activated intact control and hypertrophic veins was found. In chemically skinned preparations, devoid of functional plasma membranes, the hypertrophic veins had similar Ca2+ sensitivity (in the presence of I microM calmodulin) but a lower force per cross-sectional area. Force-velocity relations were determined in K+-activated intact preparations. In control veins a reduction in extracellular Ca2+ was associated with a significant reduction in both isometric force and maximal shortening velocity (Vmax). In hypertrophic veins the decreased isometric force at maximal activation was associated with a low Vmax. A comparison between hypertrophic and submaximally stimulated control vessels showed corresponding Vmax and isometric force values. We conclude that the low isometric force of hypertrophic veins is associated with a lower rate of cross-bridge turnover. This could be an effect of alterations in the activation mechanisms or in the intrinsic properties of the contractile system itself.
  •  
41.
  • Arner, Anders, et al. (författare)
  • Energy turnover and lactate dehydrogenase activity in detrusor smooth muscle from rats with streptozotocin-induced diabetes
  • 1993
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772. ; 147:4, s. 375-383
  • Tidskriftsartikel (refereegranskat)abstract
    • Force generation and tissue glucose metabolism were measured in the urinary bladder smooth muscle from rats with streptozotocin-induced diabetes (7-8 wk duration). Bladder wet wt was almost 4-fold higher in the diabetic animals compared with the untreated controls. Morphological analysis showed that the growth was associated with hypertrophy of the smooth muscle component in the bladder wall. Force generation of isolated bladder strip preparations was measured in vitro at different ambient oxygen tensions. Activation of intramural nerves, with electrical field stimulation, induced contractions that were unaffected by reduction of oxygen tension down to PO2 100 mmHg for both control and diabetic muscle strips. At zero PO2 force was reduced by approximately 10-20%, in both groups. High-K+ solution induced 'tonic' contractions that were slightly more inhibited by lowering PO2. At intermediate PO2 (between 100 and 20 mmHg) the diabetic muscle gave slightly higher force. At zero PO2 no significant difference could be detected between strips from control and diabetic animals. Oxygen consumption and lactate production in the preparations were determined at a PO2 of 290 mmHg and related to the volume of smooth muscle. At zero PO2, lactate formation increased 3- to 4-fold. The metabolic tension cost was lower at zero PO2. No differences in basal and contraction related metabolic rates could be detected between the two groups under normoxic and anoxic conditions. The maximal activity of lactate dehydrogenase (LDH) determined in tissue samples was about 2-fold higher in the diabetic bladder muscle.(ABSTRACT TRUNCATED AT 250 WORDS)
  •  
42.
  • Arner, Anders, et al. (författare)
  • Metabolism and force in hypertrophic smooth muscle from rat urinary bladder
  • 1990
  • Ingår i: American Journal of Physiology: Cell Physiology. - 1522-1563. ; 258:5 Pt 1, s. 923-932
  • Tidskriftsartikel (refereegranskat)abstract
    • Ten days of urinary outlet obstruction in the rat induced a threefold increase in bladder weight. Active force of control and hypertrophic bladder muscle strips was measured at varying PO2 levels after high-K+, carbachol, or electrical field stimulation. Highest force output was obtained with carbachol. Force per muscle area was lower in the hypertrophic muscles. The basal rates of oxygen consumption and lactate formation were similar in the two groups. The metabolic tension cost (ATP turnover/active force) was similar in the two groups for activation with high K+ and carbachol. In anoxia the active force decreased, but this was less pronounced in the hypertrophied muscle. Hypertrophied muscle could, in contrast to the controls, maintain a sustained K+ contracture in anoxia. Basal metabolic rates and tension cost were markedly reduced in anoxia for both groups. The lower force per area with unaltered tension cost, in hypertrophic muscles under all experimental conditions, may reflect unaltered intrinsic properties of the contractile system, although the amount of contractile material has decreased relative to cell volume. The increased resistance to anoxia may reflect a metabolic adaptation to impaired oxygen supply to the hypertrophied tissue.
  •  
43.
  • Arner, Anders, et al. (författare)
  • Structural and mechanical adaptations in rat aorta in response to sustained changes in arterial pressure
  • 1984
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772. ; 122:2, s. 119-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural and mechanical adaptations in response to sustained changes in arterial pressure were studied on abdominal aorta of the male rat. Two models were used: 1. Aortic ligature (L), immediately below the renal arteries producing hypotension distal to the knot (duration before sacrifice 6 weeks or 3 months). 2. One-clip renal hypertensive rats (H) (duration 6 weeks). Normotensive sham-operated rats (C) served as controls. At sacrifice mean tail artery pressure was L: 58 +/- 1, C: 110 +/- 3, and H: 163 +/- 5 mmHg (SE, N=6). Segments of abdominal aorta were mounted in vitro for determination of their length-tension relations (activation: High-K+ solution with 2.5 mM Ca2+). At end of experiments the vessels were supramaximally stimulated at optimal circumference (1o) for active force (activation: High-K+ solution with 10 mM Ca2+, and 10(-5) M noradrenaline), and then fixated for light and electron microscopy. Passive and active length-tension relations were shifted towards lower and higher circumference values for hypo- and hypertensive vessels, respectively. The 1o values were L: 3.60 +/- 0.13, C: 4.44 +/- 0.19, and H: 4.91 +/- 0.29 mm. The media thickness at 1o was reduced in L: 56.0 +/- 3.3, and increased in H: 81.3 +/- 2.4 compared to C: 73.4 +/- 1.8 micron. Maximal active wall stress was L: 46.6 +/- 9.8, C: 74.2 +/- 7.0, and H: 83.8 +/- 7.7 mN/mm2. Intracellular volume (ICV) in the media was L: 30 +/- 2, C: 45 +/- 3, and H: 44 +/- 1% (n=4 for each).
  •  
44.
  • Birnir, Bryndis, et al. (författare)
  • Bicuculline, pentobarbital and diazepam modulate spontaneous GABA(A) channels in rat hippocampal neurons
  • 2000
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 131:4, s. 695-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneously opening, chloride-selective channels that showed outward rectification were recorded in ripped-off patches from rat cultured hippocampal neurons and in cell-attached patches from rat hippocampal CA1 pyramidal neurons in slices. In both preparations, channels had multiple conductance states and the most common single-channel conductance varied. In the outside-out patches it ranged from 12 to 70 pS (Vp=40 mV) whereas in the cell-attached patches it ranged from 56 to 85 pS (-Vp=80 mV). Application of GABA to a patch showing spontaneous channel activity evoked a rapid, synchronous activation of channels. During prolonged exposure to either 5 or 100 microM GABA, the open probability of channels decreased. Application of GABA appeared to have no immediate effect on single-channel conductance. Exposure of the patches to 100 microM bicuculline caused a gradual decrease on the single-channel conductance of the spontaneous channels. The time for complete inhibition to take place was slower in the outside-out than in the cell-attached patches. Application of 100 microM pentobarbital or 1 microM diazepam caused 2 - 4 fold increase in the maximum channel conductance of low conductance (<40 pS) spontaneously active channels. The observation of spontaneously opening GABA(A) channels in cell-attached patches on neurons in slices suggests that they may have a role in neurons in vivo and could be an important site of action for some drugs such as benzodiazepines, barbiturates and general anaesthetics.
  •  
45.
  • Blomgren, Klas, 1963, et al. (författare)
  • Pathological apoptosis in the developing brain
  • 2007
  • Ingår i: Apoptosis. - : Springer Science and Business Media LLC. - 1360-8185 .- 1573-675X. ; 12:5, s. 993-1010
  • Forskningsöversikt (refereegranskat)abstract
    • More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
  •  
46.
  • Brage, M, et al. (författare)
  • Different cysteine proteinases involved in bone resorption and osteoclast formation.
  • 2005
  • Ingår i: Calcified tissue international. - : Springer Science and Business Media LLC. - 0171-967X .- 1432-0827. ; 76:6, s. 439-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Cysteine proteinases, especially cathepsin K, play an important role in osteoclastic degradation of bone matrix proteins and the process can, consequently, be significantly inhibited by cysteine proteinase inhibitors. We have recently reported that cystatin C and other cysteine proteinase inhibitors also reduce osteoclast formation. However, it is not known which cysteine proteinase(s) are involved in osteoclast differentiation. In the present study, we compared the relative potencies of cystatins C and D as inhibitors of bone resorption in cultured mouse calvariae, osteoclastogenesis in mouse bone marrow cultures, and cathepsin K activity. Inhibition of cathepsin K activity was assessed by determining equilibrium constants for inhibitor complexes in fluorogenic substrate assays. The data demonstrate that whereas human cystatins C and D are equipotent as inhibitors of bone resorption, cystatin D is 10-fold less potent as an inhibitor of osteoclastogenesis and 200-fold less potent as an inhibitor of cathepsin K activity. A recombinant human cystatin C variant with Gly substitutions for residues Arg8, Leu9, Val10, and Trp106 did not inhibit bone resorption, had 1,000-fold decreased inhibitory effect on cathepsin K activity compared to wildtype cystatin C, but was equipotent with wildtype cystatin C as an inhibitor of osteoclastogenesis. It is concluded that (i) different cysteine proteinases are likely to be involved in bone resorption and osteoclast formation, (ii) cathepsin K may not be an exclusive target enzyme in any of the two systems, and (iii) the enzyme(s) involved in osteoclastogenesis might not be a typical papain-like cysteine proteinase.
  •  
47.
  • Chebli, Jasmine (författare)
  • Physiological roles of amyloid precursor protein in vivo - zebrafish as a model
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyloid-beta precursor protein (APP) is an evolutionarily conserved transmembrane protein expressed in many different tissues. APP belongs to a gene family consisting of two other APP-like proteins (APLP1 and APLP2). APP has been shown to be involved in biological processes such as neurite outgrowth, neuronal migration, synapse formation and plasticity, and cell-cell interactions. APP also plays a central role in the development of Alzheimer's disease (AD). APP's physiological role has been difficult to understand and despite all research is not yet completely understood. The purpose of this thesis was to study the role of APP during early development with zebrafish as the main model system. We have focused on the zebrafish's Apps and have tried to understand their function with the help of genetic knockout models created using the CRISPR / Cas9 method. We report that appb mutants have weakened cell adhesions that give rise to changes in cell organization. We also report that the appb mutants are smaller but develop into fertile and healthy adult individuals. We also found defects in the formation of the trigeminal ganglia (TG) and that Appb seems to have a role in cell-cell interaction. The more widespread TG also consisted of fewer nerve cells, indicating that Appb promotes nerve cell formation. Furthermore, our studies demonstrate APP expression in cilia on sensory nerve cells and ependymal cells covering the brain chambers. The conserved expression of APP in ependymal cilia in mice and humans suggest an important and preserved function. Zebrafish with mutated App were found to have defects in the formation of both cilia and cerebral ventricles. To identify new signalling pathways through which Appb controls these functions, we studied protein changes in appb mutants using mass spectrometry. These studies highlight changes that both confirm known and suggest new regulations by appb, especially in neural development, cell adhesion and in gene regulation. Finally, we tried to answer the underlying mechanisms behind compensation within the App family. We found that mutations in the app genes activate expression of homologous genes via so-called transcriptional adaptation. In conclusion, the findings reported in this thesis showed that App is implicated already in early cellular adhesion and sensory neuronal differentiation processes and is located to several sensory cilia in vivo. The use of zebrafish as a model organism allowed us to gain valuable knowledge on the physiological roles of App.
  •  
48.
  • Chen, Y, et al. (författare)
  • Increase in insulin-like growth factor I in hypertrophying smooth muscle
  • 1994
  • Ingår i: American Journal of Physiology - Endocrinology and Metabolism. - 1522-1555. ; 266:2 Pt 1, s. 224-229
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study focuses on the role of the insulin-like growth factor (IGF) system in the development of smooth muscle hypertrophy. Hypertrophy was initiated by partial ligation of portal vein or urethra in female Sprague-Dawley rats weighing approximately 220 g. Levels of mRNA were analyzed by solution hybridization. Seven days after ligation, the wet weight of the portal vein was increased about threefold and the concentration of IGF-I mRNA was increased fourfold. The bladder wet weight was increased twofold 3 days after ligation and fourfold 10 days after ligation. IGF-I mRNA in the bladder was elevated 3-fold after 3 days and 2.5-fold after 10 days, whereas IGF binding protein 2 mRNA was increased approximately 2-fold after 3 days and 5-fold after 10 days. IGF-I receptor mRNA in the hypertrophying bladder remained unchanged. Increased levels of IGF-I were demonstrated with immunohistochemistry in both hypertrophying portal vein and urinary bladder. The results show a specific increase in IGF-I mRNA as well as an increased IGF-I immunoreactivity during hypertrophy of smooth muscle, which suggests that the local IGF-system may play a role in smooth muscle hypertrophy.
  •  
49.
  • De Basso, Rachel, et al. (författare)
  • Increased carotid plaque burden in men with the fibrillin-1 2/3 genotype
  • 2014
  • Ingår i: Clinical and Experimental Pharmacology and Physiology. - : Wiley. - 1440-1681 .- 0305-1870. ; 41:9, s. 637-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrillin-1 (FBN1) is an important constituent of the vascular wall and earlier studies have indicated an effect of the FBN1 2/3 genotype on blood pressure as well as aortic stiffness in men. The aim of the present study was to determine whether the FBN1 2/3 genotype was associated with the presence of carotid plaque and incident cardiovascular morbidity and mortality in middle-aged subjects. The FBN1 genotype was characterized in 5765 subjects (2424 men, 3341 women; age 45-69years) recruited from the Malmo Diet and Cancer Study Cardiovascular Cohort, Sweden. Plaque occurrence and intima-media thickness (IMT) of the carotid artery were assessed by ultrasound. The incidence of first cardiovascular events (myocardial infarction and stroke) and cause-specific mortality were monitored over a mean follow-up period of 13.2years. The most common FBN1 genotypes were 2/2, 2/3 and 2/4, which accounted for 92.2% (n=5317) of subjects. There were no differences between the three genotypes regarding age, blood pressure, glucose, lipids, smoking habits, common carotid artery diameter and intima-media thickness in men and women. The presence of plaque in the carotid artery was higher in men with the 2/3 genotype compared with the 2/2 and 2/4 genotypes (55% vs 46% and 50%, respectively; P=0.007). No similar differences were observed in women. No significant relationship was observed between FBN1 genotypes and the incidence of cardiovascular disease or all-cause mortality. The increased prevalence of plaque in the carotid artery of middle-aged men with the FBN1 2/3 genotype indicates pathological arterial wall remodelling with a more pronounced atherosclerotic burden.
  •  
50.
  • Eghbali, M, et al. (författare)
  • Pentobarbital modulates gamma-aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons.
  • 2000
  • Ingår i: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 58:3, s. 463-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the effect of a range of pentobarbital concentrations on 0.5 microM gamma-aminobutyric acid (GABA)-activated channels (10 +/- 1 pS) in inside-out or outside-out patches from rat cultured hippocampal neurons. The conductance increased from 12 +/- 4 to 62 +/- 9 pS as the pentobarbital concentration was raised from 10 to 500 microM and the data could be fitted by a Hill-type equation. At 100 microM pentobarbital plus 0.5 microM GABA, the conductance seemed to reach a plateau. The pentobarbital EC(50)(0.5 microM GABA) value was 22 +/- 4 microM and n was 1.9 +/- 0.5. In 1 mM pentobarbital plus 0.5 microM GABA, the single-channel conductance decreased to 34 +/- 8 pS. This apparent inhibition of channel conductance was relieved by 1 microM diazepam. The channel conductance was 64 +/- 6 pS in the presence of all three drugs. The channels were open more in the presence of both GABA and pentobarbital than in the presence of either drug alone. Pentobarbital alone (100 microM) activated channels with conductance (30 +/- 2 pS) and kinetic properties distinct from those activated by either GABA alone or GABA plus pentobarbital. Whether pentobarbital induces new conformations or promotes conformations observed in the presence of GABA alone cannot be determined from our study, but the results clearly show that it is the combination of drugs present that determines the single-channel conductance and the kinetic properties of the receptors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 4930
Typ av publikation
tidskriftsartikel (3849)
konferensbidrag (413)
doktorsavhandling (267)
forskningsöversikt (161)
bokkapitel (84)
annan publikation (80)
visa fler...
rapport (37)
bok (16)
samlingsverk (redaktörskap) (13)
licentiatavhandling (5)
patent (2)
recension (2)
proceedings (redaktörskap) (1)
visa färre...
Typ av innehåll
refereegranskat (4182)
övrigt vetenskapligt/konstnärligt (701)
populärvet., debatt m.m. (46)
Författare/redaktör
Eiken, Ola (253)
Fu, Michael, 1963 (88)
Mekjavic, I.B. (82)
Hellstrand, Per (81)
Gennser, Mikael (78)
Jankowska, Elzbieta (75)
visa fler...
Keramidas, Michail E ... (67)
Wessberg, Johan, 196 ... (64)
Dickson, Suzanne L., ... (63)
Ekblom, Björn (57)
Mattsson, C. Mikael (57)
Schagatay, Erika (56)
Birnir, Bryndis (51)
Ohlsson, Claes, 1965 (49)
Tribukait, Arne (49)
Arner, Anders (48)
Mallard, Carina, 196 ... (48)
Stener-Victorin, Eli ... (46)
Billig, Håkan, 1955 (45)
Chaillou, Thomas, 19 ... (45)
Gerdin, Bengt, 1947- (44)
Kölegård, Roger (43)
Hagberg, Henrik, 195 ... (42)
Mekjavic, Igor B. (42)
Johansson, Helena, 1 ... (41)
Grönkvist, Mikael (41)
Kadi, Fawzi, 1970- (40)
Wennergren, Göran, 1 ... (39)
Holm, Lena (39)
Odén, Anders, 1942 (37)
Hammar, Ingela, 1964 (36)
Benrick, Anna, 1979- (35)
Olausson, Håkan, 196 ... (34)
Arheden, Håkan (34)
Haraldsson, Börje, 1 ... (33)
Engel, Jörgen, 1942 (32)
Egecioglu, Emil, 197 ... (32)
Swärd, Karl (31)
Jonsdottir, Ingibjör ... (31)
Debevec, T. (31)
Blomstrand, Eva (31)
Johansson, Roland S (31)
Eriksson, Elias, 195 ... (30)
Kounalakis, S.N. (30)
Nilsson, Holger, 195 ... (29)
Wang, Xiaoyang, 1965 (29)
Lerner, Ulf H (29)
Norrbrand, Lena (29)
Sahlin, Kent (29)
Palm, Fredrik, 1973- (29)
visa färre...
Lärosäte
Göteborgs universitet (1694)
Lunds universitet (814)
Uppsala universitet (721)
Karolinska Institutet (705)
Kungliga Tekniska Högskolan (540)
Umeå universitet (449)
visa fler...
Linköpings universitet (263)
Gymnastik- och idrottshögskolan (254)
Chalmers tekniska högskola (251)
Örebro universitet (222)
Mittuniversitetet (167)
Stockholms universitet (136)
Sveriges Lantbruksuniversitet (57)
Högskolan i Skövde (54)
Luleå tekniska universitet (41)
Högskolan i Halmstad (30)
Malmö universitet (29)
Högskolan i Gävle (22)
Högskolan Dalarna (22)
Linnéuniversitetet (18)
Högskolan i Borås (18)
Jönköping University (17)
Högskolan Kristianstad (15)
RISE (12)
VTI - Statens väg- och transportforskningsinstitut (9)
Blekinge Tekniska Högskola (6)
Högskolan Väst (5)
Karlstads universitet (5)
Mälardalens universitet (2)
Sophiahemmet Högskola (2)
Röda Korsets Högskola (2)
Handelshögskolan i Stockholm (1)
Södertörns högskola (1)
Försvarshögskolan (1)
visa färre...
Språk
Engelska (4758)
Svenska (157)
Tyska (5)
Ryska (2)
Norska (2)
Spanska (2)
visa fler...
Franska (1)
Danska (1)
Odefinierat språk (1)
Ungerska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4928)
Naturvetenskap (260)
Teknik (185)
Samhällsvetenskap (119)
Humaniora (25)
Lantbruksvetenskap (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy