SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "(AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Bioprocess Technology)) "

Sökning: (AMNE:(ENGINEERING AND TECHNOLOGY Industrial Biotechnology Bioprocess Technology))

  • Resultat 1-25 av 780
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munthe, Christian, 1962 (författare)
  • Precaution and Ethics: Handling risks, uncertainties and knowledge gaps in the regulation of new biotechnologies
  • 2017
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This volume outlines and analyses ethical issues actualized by applying a precautionary approach to the regulation of new biotechnologies. It presents a novel way of categorizing and comparing biotechnologies from a precautionary standpoint. Based on this, it addresses underlying philosophical problems regarding the ethical assessment of decision-making under uncertainty and ignorance, and discusses how risks and possible benefits of such technologies should be balanced from an ethical standpoint. It argues on conceptual and ethical grounds for a technology neutral regulation as well as for a regulation that not only checks new technologies but also requires old, inferior ones to be phased out. It demonstrates how difficult ethical issues regarding the extent and ambition of precautionary policies need to be handled by such a regulation, and presents an overarching framework for doing so.
  •  
2.
  • Mayers, Joshua, 1988, et al. (författare)
  • Integrating Microalgal Production with Industrial Outputs - Reducing Process Inputs and Quantifying the Benefits
  • 2016
  • Ingår i: Industrial Biotechnology. - : Mary Ann Liebert Inc. - 1550-9087 .- 1931-8421. ; 12:4, s. 219-234
  • Tidskriftsartikel (refereegranskat)abstract
    • The cultivation and processing of microalgal biomass is resource- and energy-intensive, negatively affecting the sustainability and profitability of producing bulk commodities, limiting this platform to the manufacture of relatively small quantities of high-value compounds. A biorefinery approach where all fractions of the biomass are valorized might improve the case for producing lower-value products. However, these systems are still likely to operate very close to thresholds of profitability and energy balance, with wide-ranging environmental and societal impacts. It thus remains critically important to reduce the use of costly and impactful inputs and energy-intensive processes involved in these scenarios. Integration with industrial infrastructure can provide a number of residual streams that can be readily used during microalgal cultivation and downstream processing. This review critically considers some of the main inputs required for microalgal biorefineries - such as nutrients, water, carbon dioxide, and heat - and appraises the benefits and possibilities for industrial integration on a more quantitative basis. Recent literature and demonstration studies will also be considered to best illustrate these benefits to both producers and industrial operators. Additionally, this review will highlight some inconsistencies in the data used in assessments of microalgal production scenarios, allowing more accurate evaluation of potential future biorefineries.
  •  
3.
  • Skoog, Emma, 1983, et al. (författare)
  • Biobased adipic acid – The challenge of developing the production host
  • 2018
  • Ingår i: Biotechnology Advances. - : Elsevier BV. - 0734-9750. ; 36:8, s. 2248-2263
  • Forskningsöversikt (refereegranskat)abstract
    • Adipic acid is a platform chemical, and is the most important commercial dicarboxylic acid. It has been targeted for biochemical conversion as an alternative to present chemical production routes. From the perspective of bioeconomy, several kinds of raw material are of interest including the sugar platform (derived from starch, cellulose or hemicellulose), the lignin platform (aromatics) and the fatty acid platform (lipid derived). Two main biochemical-based production schemes may be employed: (i) direct fermentation to adipic acid, or (ii) fermentation to muconic or glucaric acid, followed by chemical hydrogenation (indirect fermentation). This review presents a comprehensive description of the metabolic pathways that could be constructed and analyzes their respective theoretical yields and metabolic constraints. The experimental yields and titers obtained so far are low, with the exception of processes based on palm oil and glycerol, which have been reported to yield up to 50 g and 68 g adipic acid/L, respectively. The challenges that remain to be addressed in order to achieve industrially relevant production levels include solving redox constraints, and identifying and/or engineering enzymes for parts of the metabolic pathways that have yet to be metabolically demonstrated. This review provides new insights into ways in which metabolic pathways can be constructed to achieve efficient adipic acid production. The production host provides the chassis to be engineered via an appropriate metabolic pathway, and should also have properties suitable for the industrial production of adipic acid. An acidic process pH is attractive to reduce the cost of downstream processing. The production host should exhibit high tolerance to complex raw material streams and high adipic acid concentrations at acidic pH.
  •  
4.
  • Andersson, Viktor, 1983 (författare)
  • Excess heat utilisation in oil refineries - CCS and algae-based biofuels
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objective of this thesis is to investigate two different concepts for CO2 mitigation, from a system perspective, in relation to the oil refining industry: CO2 capture and storage; and algae-based biofuels. For all these processes, process integration with an oil refinery is assumed. The oil refinery sector is a major emitter of CO2 and is responsible for 9% of the industrial emissions of CO2 worldwide. Oil refineries have large amounts of unused excess heat, which can be used to satisfy the heat demands of a CO2 capture plant, a land-based algal cultivation facility, or an algae-based biofuel process. The use of this excess heat significantly reduces the cost for CO2 capture, while an economic evaluation for algae-based biofuels has not been made.Since the amount of heat available from the oil refinery´s processes increase with decreasing temperature in the stripper reboiler, it was investigated how much heat was available at different temperatures. It was also investigated how the decreased temperature would affect the heat demand of CO2 capture processes that use MEA or ammonia as the absorbent. The findings show that it is possible to capture more CO2 using excess heat when the temperature in the stripper reboiler is decreased. For the MEA process, the lower limit of the temperature interval investigated showed the maximum CO2 capture rate, while the ammonia process benefitted from a lower temperature than the standard temperature but showed maximal CO2 capture rate above the lower limit. These results are valid only when using excess heat to satisfy the entire heat demand. At the case study refinery, the available excess heat could satisfy between 28% and 50% of the heat demand of the MEA process when treating the flue gases from all chimneys, depending on the temperature in the stripper reboiler. This utilisation of excess heat represents a way to reduce significantly the costs for CCS in an oil refinery. Land-based cultivation of algae proved to be unsuitable for the utilisation of excess heat. Since the cultivation pond is exposed to wind, rain, and cold, the heat demand fluctuates strongly over the year, making the pond an unstable recipient of the excess heat.Three types of biofuel processes based on microalgae and macroalgae were investigated with respect to integration with the oil refinery. For the algae-based biofuel processes, heat integration and material integration combined to increase the efficiency of the system. When two different build margin technologies (with different CO2 emission factors) are employed for electricity production, macroalgae-based biofuel production appears to be the more robust process from the perspective of CO2 due to the lower electricity demands of the algal cultivation and harvesting phases.
  •  
5.
  • Anasontzis, George E, 1980 (författare)
  • Biomass modifying enzymes: From discovery to application
  • 2012
  • Ingår i: Oral presentation at the Chalmers Life Science AoA conference.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It has now been realized that the road towards the bio-based economy is a one-way street, leaving gradually the oil-based technology and driving slowly towards a more sustainable society. The current non-biodegradable hydrocarbon fuels and plastics will be replaced by new products which will derive from natural and renewable resources. The synthesis of such biofuels and biochemicals is still challenged by the difficulties to cost efficiently degrade lignocellulosic material to fermentable sugars or to isolate the intact polymers. Biomass degrading and modifying enzymes play an integral role both in the separation of the polymers from the wood network, as well as in their subsequent modification, prior to further product development.Our group interests focus on all levels of applied enzyme research of biomass acting enzymes: Discovery, assay development, production and application. Relevant examples will be provided: What is our strategy for discovering novel microorganisms and enzymes from the tropical forests and grasslands of Vietnam? How do we design novel real-world assays for enzyme activity determination? Which are the bottlenecks in the enzymatic cellulose hydrolysis? How enzymes can be used to produce high added value compounds from biomass?
  •  
6.
  • Ask, Magnus, 1983 (författare)
  • Towards More Robust Saccharomyces cerevisiae Strains for Lignocellulosic Bioethanol Production: Lessons from process concepts and physiological investigations
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dwindling oil reserves and the negative impacts of fossil fuels on the environment call for more sustainable energy sources. First-generation bioethanol produced from sugar cane and corn has met some of these needs, but it competes with the food supply for raw materials. Lignocellulosic biomass is an abundant non-edible raw material that can be converted to ethanol using the yeast Saccharomyces cerevisiae. However, due to the inherent recalcitrance to degradation of lignocellulosic raw materials, harsh pretreatment methods must be used to liberate fermentable sugars, resulting in the release of compounds such as acetic acid, furan aldehydes and phenolics, that inhibit yeast metabolism. This thesis research aimed to identify bottlenecks in terms of inhibitory compounds related to ethanol production from two lignocellulosic raw materials, Arundo donax and spruce, and furthermore to harness the physiological responses to these inhibitors to engineer more robust yeast strains. A comparative study of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) revealed that acetic acid limits xylose utilization in pretreated Arundo donax, whereas the furan aldehydes furfural and 5-hydroxymethyl-2-furaldehyde (HMF) were hypothesized to be key inhibitors in pretreated spruce. The impacts of furfural and HMF on the redox and energy metabolism of S. cerevisiae were studied in detail in chemostat and batch cultivations. After adding the inhibitors to the feed medium of chemostat cultivations, the intracellular levels of NADH, NADPH, and ATP were found to decrease by 40, 75, and 19%, respectively, suggesting that furan aldehydes drain the cells of reducing power. A strong effect on redox metabolism was also observed after pulsing furfural and HMF in the xylose consumption phase in batch cultures. The drainage of reducing power was also observed in a genome-wide study of transcription that found that genes related to NADPH-requiring processes, such as nitrogen and sulphur assimilation, were significantly induced. The redox metabolism was engineered by overproducing the protective metabolite and antioxidant glutathione. Strains with an increased intracellular level of reduced glutathione were found to sustain ethanol production for longer duration in SSF of pretreated spruce, yielding 70% more ethanol than did the wild type strain.
  •  
7.
  • Ylitervo, Päivi (författare)
  • Concepts for improving ethanol productivity from lignocellulosic materials : encapsulated yeast and membrane bioreactors
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lignocellulosic biomass is a potential feedstock for production of sugars, which can be fermented into ethanol. The work presented in this thesis proposes some solutions to overcome problems with suboptimal process performance due to elevated cultivation temperatures and inhibitors present during ethanol production from lignocellulosic materials. In particular, continuous processes operated at high dilution rates with high sugar utilisation are attractive for ethanol fermentation, as this can result in higher ethanol productivity. Both encapsulation and membrane bioreactors were studied and developed to achieve rapid fermentation at high yeast cell density. My studies showed that encapsulated yeast is more thermotolerant than suspended yeast. The encapsulated yeast could successfully ferment all glucose during five consecutive batches, 12 h each at 42 °C. In contrast, freely suspended yeast was inactivated already in the second or third batch. One problem with encapsulation is, however, the mechanical robustness of the capsule membrane. If the capsules are exposed to e.g. high shear forces, the capsule membrane may break. Therefore, a method was developed to produce more robust capsules by treating alginate-chitosan-alginate (ACA) capsules with 3-aminopropyltriethoxysilane (APTES) to get polysiloxane-ACA capsules. Of the ACA-capsules treated with 1.5% APTES, only 0–2% of the capsules broke, while 25% of the untreated capsules ruptured within 6 h in a shear test. In this thesis membrane bioreactors (MBR), using either a cross-flow or a submerged membrane, could successfully be applied to retain the yeast inside the reactor. The cross-flow membrane was operated at a dilution rate of 0.5 h-1 whereas the submerged membrane was tested at several dilution rates, from 0.2 up to 0.8 h-1. Cultivations at high cell densities demonstrated an efficient in situ detoxification of very high furfural levels of up to 17 g L-1 in the feed medium when using a MBR. The maximum yeast density achieved in the MBR was more than 200 g L-1. Additionally, ethanol fermentation of nondetoxified spruce hydrolysate was possible at a high feeding rate of 0.8 h-1 by applying a submerged membrane bioreactor, resulting in ethanol productivities of up to 8 g L-1 h-1. In conclusion, this study suggests methods for rapid continuous ethanol production even at stressful elevated cultivation temperatures or inhibitory conditions by using encapsulation or membrane bioreactors and high cell density cultivations.
  •  
8.
  • Jansson, Ronnie, et al. (författare)
  • Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris
  • 2016
  • Ingår i: Biotechnology Journal. - : Wiley-VCH Verlagsgesellschaft. - 1860-6768 .- 1860-7314. ; 11:5, s. 687-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation.
  •  
9.
  • Bergman, Alexandra Linda, 1985, et al. (författare)
  • Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae
  • 2019
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Phosphoketolases (Xfpk) are a non-native group of enzymes in yeast, which can be expressed in combination with other metabolic enzymes to positively influence the yield of acetyl-CoA derived products by reducing carbon losses in the form of CO2. In this study, a yeast strain expressing Xfpk from Bifidobacterium breve, which was previously found to have a growth defect and to increase acetate production, was characterized. Results: Xfpk-expression was found to increase respiration and reduce biomass yield during glucose consumption in batch and chemostat cultivations. By cultivating yeast with or without Xfpk in bioreactors at different pHs, we show that certain aspects of the negative growth effects coupled with Xfpk-expression are likely to be explained by proton decoupling. At low pH, this manifests as a reduction in biomass yield and growth rate in the ethanol phase. Secondly, we show that intracellular sugar phosphate pools are significantly altered in the Xfpk-expressing strain. In particular a decrease of the substrates xylulose-5-phosphate and fructose-6-phosphate was detected (26% and 74% of control levels) together with an increase of the products glyceraldehyde-3-phosphate and erythrose-4-phosphate (208% and 542% of control levels), clearly verifying in vivo Xfpk enzymatic activity. Lastly, RNAseq analysis shows that Xfpk expression increases transcription of genes related to the glyoxylate cycle, the TCA cycle and respiration, while expression of genes related to ethanol and acetate formation is reduced. The physiological and transcriptional changes clearly demonstrate that a heterologous phosphoketolase flux in combination with endogenous hydrolysis of acetyl-phosphate to acetate increases the cellular demand for acetate assimilation and respiratory ATP-generation, leading to carbon losses. Conclusion: Our study shows that expression of Xfpk in yeast diverts a relatively small part of its glycolytic flux towards acetate formation, which has a significant impact on intracellular sugar phosphate levels and on cell energetics. The elevated acetate flux increases the ATP-requirement for ion homeostasis and need for respiratory assimilation, which leads to an increased production of CO2. A majority of the negative growth effects coupled to Xfpk expression could likely be counteracted by preventing acetate accumulation via direct channeling of acetyl-phosphate towards acetyl-CoA.
  •  
10.
  • Westman, Johan, 1983, et al. (författare)
  • Current progress in high cell density yeast bioprocesses for bioethanol production
  • 2015
  • Ingår i: Biotechnology journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 10:8, s. 1185-1195
  • Forskningsöversikt (refereegranskat)abstract
    • High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production.
  •  
11.
  • Zambrano, Jesús, et al. (författare)
  • Optimal steady-state design of zone volumes of bioreactors with Monod growth kinetics
  • 2015
  • Ingår i: Biochemical Engineering Journal. - : Elsevier BV. - 1369-703X .- 1873-295X. ; 100, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper deals with steady-state analysis and design of bioreactors consisting of a number of completely stirred tank reactors (CSTRs) in series. The study is confined to one consumed (substrate) and one consuming constituent (biomass). The specific microbial growth rate is assumed to be described by Monod kinetics. The death of biomass is assumed to be negligible. Two optimal design problems for a large number of CSTRs in series are studied: to minimize the effluent substrate concentration for a given total volume, and to minimize the total volume for a given effluent substrate concentration. As an appealing alternative to solve these problems numerically, it is proposed to consider the asymptotic case where the number of CSTRs tends to infinity. This is shown to correspond to one CSTR in series with a plug flow reactor (PFR). A CSTR with a sufficient large volume is needed to avoid wash-out of the biomass. The main result is that both design problems for the CSTR + PFR configuration have the same solution with respect to the optimal volume of the CSTR, which is given as an explicit function of the incoming substrate concentration, the volumetric flow rate and the coefficients of the Monod growth rate function. Numerical results indicate that the plug flow approach may be used as a feasible design procedure even for a reasonably low number of CSTRs in series.
  •  
12.
  • Franzén, Carl Johan, 1966, et al. (författare)
  • Multifeed simultaneous saccharification and fermentation enables high gravity submerged fermentation of lignocellulose.
  • 2015
  • Ingår i: Recent Advances in Fermentation Technology (RAFT 11), Clearwater Beach, Florida, USA, November 8-11, 2015. Oral presentation..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Today, second generation bioethanol production is becoming established in production plants across the world. In addition to its intrinsic value, the process can be viewed as a model process for biotechnological conversion of recalcitrant lignocellulosic raw materials to a range of chemicals and other products. So called High Gravity operation, i.e. fermentation at high solids loadings, represents continued development of the process towards higher product concentrations and productivities, and improved energy and water economy. We have employed a systematic, model-driven approach to the design of feeding schemes of solid substrate, active yeast adapted to the actual substrate, and enzymes to fed-batch simultaneous saccharification and co-fermentation (Multifeed SSCF) of steam-pretreated lignocellulosic materials in stirred tank reactors. With this approach, mixing problems were avoided even at water insoluble solids contents of 22%, leading to ethanol concentrations of 56 g/L within 72 hours of SSCF on wheat straw. Similar fermentation performance was verified in 10 m3 demonstration scale using wheat straw, and in lab scale on birch and spruce, using several yeast strains. The yeast was propagated in the liquid fraction obtained by press filtration of the pretreated slurry. Yet, even with such preadaptation and repeated addition of fresh cells, the viability in the SSCF dropped due to interactions between lignocellulose-derived inhibitors, the produced ethanol and the temperature. Decreasing the temperature from 35 to 30°C when the ethanol concentration reached 40-50 g/L resulted in rapid initial hydrolysis, maintained fermentation capacity, lower residual glucose and xylose and ethanol concentrations above 60 g/L.
  •  
13.
  • Nickel, David, 1990, et al. (författare)
  • Uncertainty analysis as a tool to consistently evaluate lignocellulosic bioethanol processes at different system scales
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Lignocellulosic processes are highly prone to batch-to batch variability, e.g. of raw materials and enzyme activities. This variability can be propagated throughout system scales during process development and optimization, influencing the outputs of bioreaction models, techno-economic analyses and life cycle assessments. As these outputs are the main decision variables for designing and developing lignocellulose-based processes, tools are required to evaluate the influences of process variation at different system scales. Uncertainty analysis quantifies the effects of model input variations on model outputs. It is an effective tool to consistently propagate process variation throughout scales and analyse its influence on model outputs. As an example, we use a model describing multi-feed simultaneous saccharification and co-fermentation (SSCF) of wheat straw. During the process enzymes hydrolyse the lignocellulosic material to release glucose which can be converted by microorganisms into ethanol. To investigate the impact of batch-to-batch variability in enzyme cocktails, we collected literature data on the enzymatic activity of Cellic CTec2. Retrieved data were propagated in models at bioreactor, techno-economic analysis and life cycle assessment scale. We show how uncertainty analysis can be used to guide process development by comparing different modes of operation. The method can identify economically feasible process ranges with low environmental impact while increasing the robustness of bioprocesses with high variation in raw material inputs. Furthermore, uncertainty analysis could help to identify relevant parameters to choose as response variables in experimental designs.
  •  
14.
  • Wang, Ruifei, 1985, et al. (författare)
  • Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production.
  • 2016
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834 .- 1754-6834. ; 9:1, s. 88-
  • Tidskriftsartikel (refereegranskat)abstract
    • High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations.
  •  
15.
  • Ylitervo, Päivi, et al. (författare)
  • Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations
  • 2014
  • Ingår i: Membranes. - : MDPI. - 2077-0375. ; 4:3, s. 372-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g•L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g•L−1) and very high (100–200 g•L−1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g•L−1 sucrose, at volumetric rates of 5–6 g•L−1•h−1 at acetic acid concentrations up to 15.0 g•L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g•L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials.
  •  
16.
  • Nickel, David, 1990, et al. (författare)
  • Multi-scale uncertainty analysis – A tool to systematically consider variability in lignocellulosic bioethanol processes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Bioethanol production processes from lignocellulosic raw materials are highly prone to batch-to-batch variations. For example, raw material compositions and enzymatic activities required to release fermentable sugars from lignocellulose vary significantly between batches. To develop lignocellulosic biofuel processes and evaluate their performance regarding economics and sustainability consistently, tools are required to cope with this variability.   In this presentation we will propose a multi-scale uncertainty analysis strategy to propagate input variability throughout system scales. In a first step, we use meta-data obtained from literature to define uncertainties in the process inputs. Utilizing these meta-data, uncertainty analysis is performed on a macro-kinetic model by sampling from the defined uncertain input space. The results of this uncertainty analysis are transferred to process simulations to analyze the impact of input uncertainties on the process mass- and energy balances, and on the economics of building this type of bioprocess. The generated data from process simulations (mass flows, energy integration, and economic data) are in the next step extracted and used as input to an environmental impact assessment of the process. This is done whilst keeping the simulation and systems modeling parameters constant, thus the input variability is propagated throughout the different system scales. The data generated in this integrated approach will then be compared with the variations and uncertainties observed with relevance to the estimated parameters in the process simulation and environmental impact assessment. Based on this consistent strategy, we can analyze the impact of input variability from different system perspectives, identify important bottlenecks for development, and suggest robust and sustainable process designs for different conditions and under given uncertainties.   In a case study we demonstrate how integrated kinetic modeling (in Matlab), process simulation (in SuperPro Designer), and environmental impact assessment together with statistical analysis can be used for assessing how variability in enzymatic activities in bioethanol production can be propagated throughout system scales. A macro-kinetic model is used to describe the enzymatic breakdown of lignocellulose-derived polysaccharides into fermentable sugars (saccharification) and the simultaneous fermentation to bioethanol. We discuss the integration of the simulation results of the macro-kinetic model into the flowsheeting software for mass and energy balance generation, and then further on to assess environmental impacts of the process. We will evaluate different process designs regarding their robustness towards input variability. Finally, we also show how propagated uncertainties at different system scales can be integrated to design experiments at laboratory scale so that these focus on the most important parameters for developing robust kinetic models, and include the parameters that are most important for sustainable design of processes and value chains.
  •  
17.
  • Nickel, David, 1990 (författare)
  • Process development for platform chemical production from agricultural and forestry residues
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As part of a bio-based economy, biorefineries are envisaged to sustainably produce platform chemicals via biochemical conversion of agricultural and forestry residues. However, supply risks, the recalcitrance of lignocellulosic biomass, and inhibitor formation during pre­treatment impair the economic feasibility of such biorefineries. In this thesis, process design and assessment were developed with the aim of addressing these hurdles and improving the cost-effectiveness of lignocellulose-derived platform chemicals. To expand the feedstock base and reduce operational costs, logging residues served as underutilised and inexpensive raw material. The major impediment in converting logging residues was their high recalcitrance and low cellulose content, which resulted in low attainable ethanol titres during simultaneous saccharification and co-fermentation (SSCF). Pretreatment optimisation reduced inhibitor formation and recalcitrance, and led to enzymatic hydrolysis yields at par with those obtained for stem wood, despite the less favourable chemical composition. Upgrading logging residues with carbohydrate-rich oat hulls increased ethanol titres to >50 g/L using batch SSCF at 20% WIS loadings, demonstrating the potential to further decrease downstream processing costs. To alleviate the toxicity of inhibitors generated during pretreatment, preadaptation was applied to Saccharomyces cerevisiae . Exposure to the inhibitors in the pretreated liquid fraction improved ethanol production during subsequent fermentation. Transferring the concept of preadaptation to lactic acid production by Bacillus coagulans cut the process times by half and more than doubled the average specific lactic acid productivity, showcasing how preadaptation could decrease operational costs. To assess the performance and robustness of process designs against process input variations, a multi-scale variability analysis framework was developed. The framework included models for bioprocess, flowsheet, techno-economic, and life cycle assessment. In a case study, multi-feed processes, in which solids and cells are fed to the process using model-based predictions, were more robust against variable cellulolytic activities than batch SSCFs in a wheat straw-based ethanol biorefinery. The developed framework can be used to identify robust biorefinery process designs, which simultaneously meet technological, economic, and environmental goals.
  •  
18.
  • Skvaril, Jan, 1982-, et al. (författare)
  • Applications of near-infrared spectroscopy (NIRS) in biomass energy conversion processes : A review
  • 2017
  • Ingår i: Applied spectroscopy reviews (Softcover ed.). - : Informa UK Limited. - 0570-4928 .- 1520-569X. ; 52:8, s. 675-728
  • Forskningsöversikt (refereegranskat)abstract
    • Biomass used in energy conversion processes is typically characterized by high variability, making its utilization challenging. Therefore, there is a need for a fast and non-destructive method to determine feedstock/product properties and directly monitor process reactors. The near-infrared spectroscopy (NIRS) technique together with advanced data analysis methods offers a possible solution. This review focuses on the introduction of the NIRS method and its recent applications to physical, thermochemical, biochemical and physiochemical biomass conversion processes represented mainly by pelleting, combustion, gasification, pyrolysis, as well as biogas, bioethanol, and biodiesel production. NIRS has been proven to be a reliable and inexpensive method with a great potential for use in process optimization, advanced control, or product quality assurance.
  •  
19.
  • Brechmann, Nils Arnold, et al. (författare)
  • Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture
  • 2019
  • Ingår i: Biotechnology progress (Print). - : AIChE. - 8756-7938 .- 1520-6033.
  • Tidskriftsartikel (refereegranskat)abstract
    • High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the developmentof a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarifiedCHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum bindingcapacity of 65 mg/mL and an adsorption capacity of 25–42 mg IgG/mL bead in suspension for anIgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture stepfrom 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions wereobtained in cell broth containing 40 Å~ 106 cells/mL as in clarified supernatant. Two pilot-scalepurification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L,where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single proteinA capture step, the mAb purity was similar to the one obtained by column chromatography, whilethe host cell protein content was very low, <10 ppm. Our results showed that this magnetic beadmAb purification process, using a dedicated pilot-scale separation device, was a highly efficientsingle step, which directly connected the culture to the downstream process without cell clarification.Purification of mAb directly from non-clarified cell broth without cell separation can providesignificant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step.
  •  
20.
  • Martinez Avila, Hector, 1985 (författare)
  • Biofabrication, Biomechanics and Biocompatibility of Nanocellulose-based Scaffolds for Auricular Cartilage Regeneration
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In about 2:10,000 births the external part of the ear, the auricle, is severely malformed or absent. Furthermore, tumors and trauma can cause defects to the auricle. For patients with dysplasia of the auricle, and especially for children, an inconspicuous outer appearance with life-like auricles is important for their psychological and emotional well being as well as their psycho-social development. Auricular reconstruction remains a great challenge due to the complexity of surgical reconstruction using rib cartilage. Despite the advances in stem cell technology and biomaterials, auricular cartilage tissue engineering (TE) is still in an early stage of development due to critical requirements demanding appropriate mechanical properties and shape stability of the tissue-engineered construct. This thesis has focused on developing patient-specific tissue-engineered auricles for one-step surgery using a novel biomaterial, bacterial nanocellulose (BNC), seeded with human nasoseptal chondrocytes (hNC) and bone marrow mononuclear cells (MNC).Biomechanical properties of human auricle cartilage were measured and used as a benchmark for tuning BNC properties. In order to meet the biomechanical requirements, a scaffold with bilayer architecture composed of a dense BNC support layer and a macroporous structure was designed. Firstly, the biocompatibility of the dense BNC layer was investigated, demonstrating a minimal foreign body response according to standards set forth in ISO 10993. Secondly, different methods to create macroporous BNC scaffolds were studied and the redifferentiation capacity of hNCs was evaluated in vitro; revealing that macroporous BNC scaffolds support cell ingrowth, proliferation and neocartilage formation. The bilayer BNC scaffold was biofabricated and tested for endotoxins and cytotoxicity before evaluating in long-term 3D culture, and subsequently in vivo for eight weeks—in an immunocompromised animal model. The results demonstrated that the non-pyrogenic and non- cytotoxic bilayer BNC scaffold offers a good mechanical stability and maintains a structural integrity, while providing a porous 3D environment that is suitable for hNCs and MNCs to produce neocartilage, in vitro and in vivo. Furthermore, patient-specific auricular BNC scaffolds with bilayer architecture were biofabricated and seeded with autologous rabbit auricular chondrocytes (rAC) for implantation in an immunocompetent rabbit model for six weeks. The results demonstrated the shape stability of the rAC-seeded scaffolds and neocartilage depositions in the immunocompetent autologous grafts. 3D bioprinting was also evaluated for biofabrication of patient-specific, chondrocyte-laden auricular constructs using a bioink composed of nanofibrillated cellulose and alginate. Bioprinted auricular constructs showed an excellent shape and size stability after in vitro culture. Moreover, this bioink supports redifferentiation of hNCs while offering excellent printability, making this a promising approach for auricular cartilage TE. Furthermore, the use of bioreactors is essential for the development of tissue-engineered cartilage in vitro. Thus, a compression bioreactor was utilized to apply dynamic mechanical stimulation to cell-seeded constructs as a means to enhance production of extracellular matrix in vitro.In this work, a potential clinical therapy for auricular reconstruction using tissue-engineered auricles is demonstrated; where BNC is proposed as a promising non-degradable biomaterial with good chemical and mechanical stability for auricular cartilage TE. Although the primary focus of this thesis is on auricular reconstruction, the methods developed are also applicable in the regeneration of other cartilage tissues such as those found in the nose, trachea, spine and articular joints.
  •  
21.
  • Rupar, Katarina, et al. (författare)
  • Solid Phase Micro Extraction Fibers, Calibration for Use in Biofilter Applications
  • 2006
  • Ingår i: Biochemical Engineering Journal. - : Elsevier BV. - 1369-703X. ; 31:2, s. 107-112
  • Tidskriftsartikel (refereegranskat)abstract
    • The main purpose of this study is to develop a SPME calibration method suitable for use in evaluation of concentrations of hydrophobic substances in environmental samples. The analyte used in the experiments was alpha-pinene, a hydrophobic organic compound commonly found in wood, and therefore found in wood storage facilities, wood processing industries and wood based biofilters. The SPME fibres were calibrated for different concentrations of alpha-pinene at different temperatures and relative humidities. The method was used to evaluate the removal efficiency of a lab-scale biofilter.
  •  
22.
  • Ferreira, Sofia, et al. (författare)
  • Metabolic engineering strategies for butanol production in Escherichia coli
  • 2020
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 117:8, s. 2571-2587
  • Forskningsöversikt (refereegranskat)abstract
    • The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
  •  
23.
  • Huang, Mingtao, 1984, et al. (författare)
  • Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:47, s. E11025-E11032
  • Tidskriftsartikel (refereegranskat)abstract
    • Baker’s yeast Saccharomyces cerevisiae is one of the most important and widely used cell factories for recombinant protein production. Many strategies have been applied to engineer this yeast for improving its protein production capacity, but productivity is still relatively low, and with increasing market demand, it is important to identify new gene targets, especially targets that have synergistic effects with previously identified targets. Despite improved protein production, previous studies rarely focused on processes associated with intracellular protein retention. Here we identified genetic modifications involved in the secretory and trafficking pathways, the histone deacetylase complex, and carbohydrate metabolic processes as targets for improving protein secretion in yeast. Especially modifications on the endosome-to-Golgi trafficking was found to effectively reduce protein retention besides increasing protein secretion. Through combinatorial genetic manipulations of several of the newly identified gene targets, we enhanced the protein production capacity of yeast by more than fivefold, and the best engineered strains could produce 2.5 g/L of a fungal α-amylase with less than 10% of the recombinant protein retained within the cells, using fed-batch cultivation.
  •  
24.
  • Olofsson, Martin, 1975-, et al. (författare)
  • Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata 
  • 2014
  • Ingår i: Marine Drugs. - Basel, Switzerland : MDPI AG. - 1660-3397. ; 12:4, s. 1891-1910
  • Tidskriftsartikel (refereegranskat)abstract
    • Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.
  •  
25.
  • Danielsson, Per-Erik (författare)
  • Implementations of the Convolution Operation
  • 1982
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The first part of this article surveys a large number of implementations of the convolution operation (which is also known as the sum-of-products, the inner product) based on a systematic exploration of index permutations. First we assume a limited amount of parallelism in the form of an adder. Next, multipliers and RAM:s are utilized. The so called distributed arithmetic follows naturally from this approach.The second part brings in the concept of pipelining on the bitlevel to obtain high throughput convolvers adapted for VLSI-design (systolic arrays). The serial/parallel multiplier is analyzed in a way that unravels a vast amount new variations. Even more interesting, all these new variations can be carried over to serial/parallel convolvers. These novel devices can be implemented as linear structures of identical cells where the multipliers are embedded at equidistant intervals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 780
Typ av publikation
tidskriftsartikel (544)
konferensbidrag (78)
doktorsavhandling (47)
forskningsöversikt (39)
bokkapitel (26)
annan publikation (18)
visa fler...
licentiatavhandling (12)
rapport (5)
samlingsverk (redaktörskap) (4)
patent (4)
bok (3)
konstnärligt arbete (1)
visa färre...
Typ av innehåll
refereegranskat (631)
övrigt vetenskapligt/konstnärligt (139)
populärvet., debatt m.m. (10)
Författare/redaktör
Christakopoulos, Pau ... (183)
Rova, Ulrika (166)
Matsakas, Leonidas (109)
Berglund, Kris (81)
Topakas, Evangelos (58)
Hodge, David (45)
visa fler...
Patel, Alok, Dr. 198 ... (32)
Taherzadeh, Mohammad ... (29)
Olsson, Lisbeth, 196 ... (24)
Hodge, David B. (19)
Sjöblom, Magnus (16)
Enman, Josefine (16)
Albers, Eva, 1966 (15)
Hegg, Eric L. (15)
Antonopoulou, Io, 19 ... (14)
Chotteau, Véronique, ... (14)
Janssen, Mathias, 19 ... (13)
Karnaouri, Anthi C. (13)
Karnaouri, Anthi (12)
Andersson, Christian (11)
Mandenius, Carl-Fred ... (11)
Sarkar, Omprakash (11)
Hrůzová, Kateřina (11)
Zerva, Anastasia (11)
Dimarogona, Maria (11)
Chotteau, Véronique (10)
Franzén, Carl Johan, ... (10)
Helmerius, Jonas (10)
Hagander, Per (9)
Mahboubi, Amir (9)
Antonopoulou, Io (9)
Schwarz, Hubert (9)
Williams, Daniel L. (9)
Nielsen, Jens B, 196 ... (8)
Wallberg, Ola (8)
Mayers, Joshua, 1988 (8)
Jûtten, Peter (8)
Krige, Adolf (8)
Bhalla, Aditya (8)
Singh, Sandip K. (8)
Stoklosa, Ryan J. (8)
Li, Muyang (8)
Katsimpouras, Consta ... (8)
Lidén, Gunnar (7)
Holst, Olle (7)
Hatti-Kaul, Rajni (7)
Mattiasson, Bo (7)
Sandgren, Mats (7)
Martin, Carlos (7)
Muraleedharan, Madhu ... (7)
visa färre...
Lärosäte
Luleå tekniska universitet (423)
Chalmers tekniska högskola (130)
Lunds universitet (90)
Kungliga Tekniska Högskolan (65)
Högskolan i Borås (39)
Sveriges Lantbruksuniversitet (36)
visa fler...
Umeå universitet (30)
Linköpings universitet (23)
RISE (19)
Göteborgs universitet (12)
Uppsala universitet (7)
Linnéuniversitetet (7)
Mälardalens universitet (6)
Stockholms universitet (4)
Karolinska Institutet (4)
Örebro universitet (3)
Mittuniversitetet (3)
Högskolan i Halmstad (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (779)
Tyska (1)
Forskningsämne (UKÄ/SCB)
Teknik (780)
Naturvetenskap (128)
Lantbruksvetenskap (26)
Medicin och hälsovetenskap (19)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy