SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antson Alfred) "

Sökning: WFRF:(Antson Alfred)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Emelie, et al. (författare)
  • Diversity and host interactions among virulent and temperate Baltic Sea Flavobacterium phages
  • 2020
  • Ingår i: Viruses. - : MDPI. - 1999-4915. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses in aquatic environments play a key role in microbial population dynamics and nutrient cycling. In particular, bacteria of the phylum Bacteriodetes are known to participate in recycling algal blooms. Studies of phage-host interactions involving this phylum are hence important to understand the processes shaping bacterial and viral communities in the ocean as well as nutrient cycling. In this study, we isolated and sequenced three strains of flavobacteria-LMO6, LMO9, LMO8-and 38 virulent phages infecting them. These phages represent 15 species, occupying three novel genera. Additionally, one temperate phage was induced from LMO6 and was found to be competent at infecting LMO9. Functions could be predicted for a limited number of phage genes, mainly representing roles in DNA replication and virus particle formation. No metabolic genes were detected. While the phages isolated on LMO8 could infect all three bacterial strains, the LMO6 and LMO9 phages could not infect LMO8. Of the phages isolated on LMO9, several showed a host-derived reduced efficiency of plating on LMO6, potentially due to differences in DNA methyltransferase genes. Overall, these phage-host systems contribute novel genetic information to our sequence databases and present valuable tools for the study of both virulent and temperate phages.
  •  
2.
  • Rahlff, Janina, et al. (författare)
  • Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick
  • 2023
  • Ingår i: ISME Communications. - : Springer Nature. - 2730-6151. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
  •  
3.
  • Rahlff, Janina, et al. (författare)
  • Ecogenomics reveals distinctive viral-bacterial communities in the surface microlayer of a natural surface slick
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Visible surface films, termed slicks, can extensively cover the sea surface, particularly in coastal regions. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (slick SML) harbors a distinctive bacterial community, but little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we investigated viruses and the bacterial community from a brackish slick SML in comparison to non-slick SML as well as the seawater below (SSW). We conducted size-fractionated filtration of all samples to distinguish viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. The distinctness was underlined by specific metabolic profiles of bacterial metagenome assembled genomes and isolates, which revealed prevalence of motility genes and diversity of CAZymes in the slick SML. Despite overall lower diversity, several vOTUs were enriched in slick SML over slick SSW. Nine vOTUs were only found in slick SML and six of them were targeted by slick SML-specific CRISPR spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, representing abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks can contribute to biogeochemical cycling in coastal ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy