SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chandler Samuel J. P.) "

Search: WFRF:(Chandler Samuel J. P.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
2.
  • Falster, Daniel, et al. (author)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • In: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
3.
  • Chandler, Benjamin M. P., et al. (author)
  • Sub‐annual moraine formation at an active temperate Icelandic glacier
  • 2020
  • In: Earth Surface Processes and Landforms. - : Wiley. - 0197-9337 .- 1096-9837. ; 45:7, s. 1622-1643
  • Journal article (peer-reviewed)abstract
    • This paper presents detailed geomorphological and sedimentological investigations of small recessional moraines at Fjallsjökull, an active temperate outlet of Öræfajökull, southeast Iceland. The moraines are characterised by striking sawtooth or hairpin planforms, which are locally superimposed, giving rise to a complex spatial pattern. We recognise two distinct populations of moraines, namely a group of relatively prominent moraine ridges (mean height ~1.2 m) and a group of comparatively low‐relief moraines (mean height ~0.4 m). These two groups often occur in sets/systems, comprising one pronounced outer ridge and several inset smaller moraines. Using a representative subsample of the moraines, we establish that they form by either (i) submarginal deformation and squeezing of subglacial till or (ii) pushing of extruded tills. Locally, proglacial (glaciofluvial) sediments are also incorporated within the moraines during pushing. For the first time, to our knowledge, we demonstrate categorically that these moraines formed sub‐annually using repeat uncrewed aerial vehicle (UAV) imagery. We present a conceptual model for sub‐annual moraine formation at Fjallsjökull that proposes the sawtooth moraine sequence comprises (i) sets of small squeeze moraines formed during melt‐driven squeeze events and (ii) larger push moraines formed during winter re‐advances. We suggest the development of this process‐form regime is linked to a combination of elevated temperatures, high surface meltwater fluxes to the bed, and emerging basal topography (a depositional overdeepening). These factors result in highly saturated subglacial sediments and high porewater pressures, which induces submarginal deformation and ice‐marginal squeezing during the melt season. Strong glacier recession during the summer, driven by elevated temperatures, allows several squeeze moraines to be emplaced. This process‐form regime may be characteristic of active temperate glaciers receding into overdeepenings during phases of elevated temperatures, especially where their englacial drainage systems allow efficient transfer of surface meltwater to the glacier bed near the snout margin.
  •  
4.
  • Chandler, Benjamin M. P., et al. (author)
  • The glacial landsystem of Fjallsjökull, Iceland : Spatial and temporal evolution of process-form regimes at an active temperate glacier
  • 2020
  • In: Geomorphology. - : Elsevier BV. - 0169-555X .- 1872-695X. ; 361
  • Journal article (peer-reviewed)abstract
    • This study assesses the spatial and temporal evolution of the glacial landsystem signature at Fjallsjiikull, southeast Iceland, using (a) mapping of the glacial geomorphology and surficial geology and (b) repeat uncrewed aerial vehicle (UAV) surveys. A small-scale (1: 15,000 scale) landsystem map has been compiled using LiDAR data (2011-2012) and historical aerial photographs (1945-1998), along with a large-scale (1: 2000 scale) map based on UAV imagery from May 2019. From our mapping and UAV surveys, we identify sediment-landform assemblages that are typical of active temperate glacial landsystems, including recessional push/squeeze moraines and intervening flutings, overridden moraine arcs, proglacial outwash (sandur) fans and linear/ribbon sandar. We recognize three landform zones that are defined by changes in moraine morphology and the nature of proglacial outwash deposition: (1) the outer foreland is characterized by proglacial outwash fans, overridden moraine arcs and broadly linear recessional moraines; (2) the middle foreland contains sawtooth moraines and linear sandar; and (3) the innermost zone comprises extremely sawtooth and hairpin moraines as well as associated crevasse-squeeze ridge limbs. This landform zonation reflects spatio-temporal changes in moraineforming processes and outwash deposition as determined by changes in snout morphology arid proglacial drainage characteristics. Within this general tripartite zonation, we also identify localized (atonal/intrazonal) sediment-landform assemblages that are not typically found at active temperate glaciers, including ice-cored/hummocky terrain and localized kame and kettle topography. Repeat UAV surveying in 2016-2019 has allowed us to capture and quantify recent intrazonal landsystem change at the southern glacier margin. We identify a switch from moraine formation to the development of ice-cored terrain and an ice-cored esker complex in association with the uncovering of a depositional overdeepening,. Our study demonstrates the important role that variations in local boundary conditions (e.g. topography) can play in the process-form response of individual active temperate outlet glaciers, contributing to the expanding database on modern glacial landsystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view