SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fjell Anders) "

Sökning: WFRF:(Fjell Anders)

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fjell, Anders M, et al. (författare)
  • Brain Atrophy in Healthy Aging Is Related to CSF Levels of A{beta}1-42.
  • 2010
  • Ingår i: Cerebral cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 20:9, s. 2069-2079
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced levels of beta-amyloid(1-42) (Abeta1-42) and increased levels of tau proteins in the cerebrospinal fluid (CSF) are found in Alzheimer's disease (AD), likely reflecting Abeta deposition in plaques and neuronal and axonal damage. It is not known whether these biomarkers are associated with brain atrophy also in healthy aging. We tested the relationship between CSF levels of Abeta1-42 and tau (total tau and tau phosphorylated at threonine 181) proteins and 1-year brain atrophy in 71 cognitively normal elderly individuals. Results showed that under a certain threshold value, levels of Abeta1-42 correlated highly with 1-year change in a wide range of brain areas. The strongest relationships were not found in the regions most vulnerable early in AD. Above the threshold level, Abeta1-42 was not related to brain changes, but significant volume reductions as well as ventricular expansion were still seen. It is concluded that Abeta1-42 correlates with brain atrophy and ventricular expansion in a subgroup of cognitively normal elderly individuals but that reductions independent of CSF levels of Abeta1-42 is common. Further research and follow-up examinations over several years are needed to test whether degenerative pathology will eventually develop in the group of cognitively normal elderly individuals with low levels of Abeta1-42.
  •  
2.
  • Nyberg, Lars, et al. (författare)
  • Educational attainment does not influence brain aging
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging.
  •  
3.
  • Nyberg, Lars, 1966-, et al. (författare)
  • Forecasting memory function in aging : pattern-completion ability and hippocampal activity relate to visuospatial functioning over 25 years
  • 2020
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 94, s. 217-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterogeneity in episodic memory functioning in aging was assessed with a pattern-completion functional magnetic resonance imaging task that required reactivation of well-consolidated face-name memory traces from fragmented (partial) or morphed (noisy) face cues. About half of the examined individuals (N = 101) showed impaired (chance) performance on fragmented faces despite intact performance on complete and morphed faces, and they did not show a pattern-completion response in hippocampus or the examined subfields (CA1, CA23, DGCA4). This apparent pattern-completion deficit could not be explained by differential hippocampal atrophy. Instead, the impaired group displayed lower cortical volumes, accelerated reduction in mini-mental state examination scores, and lower general cognitive function as defined by longitudinal measures of visuospatial functioning and speed-of-processing. In the full sample, inter-individual differences in visuospatial functioning predicted performance on fragmented faces and hippocampal CA23 subfield activity over 25 years. These findings suggest that visuospatial functioning in middle age can forecast pattern-completion deficits in aging. 
  •  
4.
  • Nyberg, Lars, 1966-, et al. (författare)
  • Individual differences in brain aging : heterogeneity in cortico-hippocampal but not caudate atrophy rates
  • 2023
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 33:9, s. 5075-5081
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.
  •  
5.
  • Walhovd, Kristine B., et al. (författare)
  • Neurodevelopmental origins of lifespan changes in brain and cognition
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:33, s. 9357-9362
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4-88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother-Child Cohort study were identified as such early factors of possible lifelong influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain-cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course.
  •  
6.
  • Binnewies, Julia, et al. (författare)
  • Associations of depression and regional brain structure across the adult lifespan : Pooled analyses of six population-based and two clinical cohort studies in the European Lifebrain consortium
  • 2022
  • Ingår i: NeuroImage. - : Elsevier. - 2213-1582. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Major depressive disorder has been associated with lower prefrontal thickness and hippocampal volume, but it is unknown whether this association also holds for depressive symptoms in the general population. We investigated associations of depressive symptoms and depression status with brain structures across population-based and patient-control cohorts, and explored whether these associations are similar over the lifespan and across sexes.Methods: We included 3,447 participants aged 18–89 years from six population-based and two clinical patient-control cohorts of the European Lifebrain consortium. Cross-sectional meta-analyses using individual person data were performed for associations of depressive symptoms and depression status with FreeSurfer-derived thickness of bilateral rostral anterior cingulate cortex (rACC) and medial orbitofrontal cortex (mOFC), and hippocampal and total grey matter volume (GMV), separately for population-based and clinical cohorts.Results: Across patient-control cohorts, depressive symptoms and presence of mild-to-severe depression were associated with lower mOFC thickness (rsymptoms = −0.15/ rstatus = −0.22), rACC thickness (rsymptoms = −0.20/ rstatus = −0.25), hippocampal volume (rsymptoms = −0.13/ rstatus = 0.13) and total GMV (rsymptoms = −0.21/ rstatus = −0.25). Effect sizes were slightly larger for presence of moderate-to-severe depression. Associations were similar across age groups and sex. Across population-based cohorts, no associations between depression and brain structures were observed.Conclusions: Fitting with previous meta-analyses, depressive symptoms and depression status were associated with lower mOFC, rACC thickness, and hippocampal and total grey matter volume in clinical patient-control cohorts, although effect sizes were small. The absence of consistent associations in population-based cohorts with mostly mild depressive symptoms, suggests that significantly lower thickness and volume of the studied brain structures are only detectable in clinical populations with more severe depressive symptoms.
  •  
7.
  • Binnewies, Julia, et al. (författare)
  • Lifestyle-related risk factors and their cumulative associations with hippocampal and total grey matter volume across the adult lifespan : a pooled analysis in the European Lifebrain consortium
  • 2023
  • Ingår i: Brain Research Bulletin. - : Elsevier. - 0361-9230 .- 1873-2747. ; 200
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lifestyle-related risk factors, such as obesity, physical inactivity, short sleep, smoking and alcohol use, have been associated with low hippocampal and total grey matter volumes (GMV). However, these risk factors have mostly been assessed as separate factors, leaving it unknown if variance explained by these factors is overlapping or additive. We investigated associations of five lifestyle-related factors separately and cumulatively with hippocampal and total GMV, pooled across eight European cohorts.Methods: We included 3838 participants aged 18–90 years from eight cohorts of the European Lifebrain consortium. Using individual person data, we performed cross-sectional meta-analyses on associations of presence of lifestyle-related risk factors separately (overweight/obesity, physical inactivity, short sleep, smoking, high alcohol use) as well as a cumulative unhealthy lifestyle score (counting the number of present lifestyle-related risk factors) with FreeSurfer-derived hippocampal volume and total GMV. Lifestyle-related risk factors were defined according to public health guidelines.Results: High alcohol use was associated with lower hippocampal volume (r = −0.10, p = 0.021), and overweight/obesity with lower total GMV (r = −0.09, p = 0.001). Other lifestyle-related risk factors were not significantly associated with hippocampal volume or GMV. The cumulative unhealthy lifestyle score was negatively associated with total GMV (r = −0.08, p = 0.001), but not hippocampal volume (r = −0.01, p = 0.625).Conclusions: This large pooled study confirmed the negative association of some lifestyle-related risk factors with hippocampal volume and GMV, although with small effect sizes. Lifestyle factors should not be seen in isolation as there is evidence that having multiple unhealthy lifestyle factors is associated with a linear reduction in overall brain volume.
  •  
8.
  • Capogna, Elettra, et al. (författare)
  • Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers.
  • 2024
  • Ingår i: bioRxiv : the preprint server for biology.
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural brain changes underly cognitive changes in older age and contribute to inter-individual variability in cognition. Here, we assessed how changes in cortical thickness, surface area, and subcortical volume, are related to cognitive change in cognitively unimpaired older adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, we tested (1) which brain structural changes over time predict cognitive change in older age (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers phosphorylated tau (p-tau) and amyloid-β (Aβ42), and (3) the degree of overlap between clusters derived from different structural features. In total 1899 cognitively healthy older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aβ42 measurements. We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older adults based on structural brain change patterns over time. Four clusters for each brain feature were identified, representing the degree of longitudinal brain decline. Each brain feature provided a unique contribution to brain aging as clusters were largely independent across modalities. Cognitive change and baseline cognition were best predicted by cortical area change, whereas higher levels of p-tau and Aβ42 were associated with changes in subcortical volume. These results provide insights into the link between changes in brain morphology and cognition, which may translate to a better understanding of different aging trajectories.
  •  
9.
  • Fjell, Anders M., et al. (författare)
  • Is short sleep bad for the brain? : Brain structure and cognitive function in short sleepers
  • 2023
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 43:28, s. 5241-5250
  • Tidskriftsartikel (refereegranskat)abstract
    • Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT: Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.
  •  
10.
  • Fjell, Anders Martin, et al. (författare)
  • Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy.
  • 2018
  • Ingår i: Cerebral cortex (New York, N.Y. : 1991). - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 28:8, s. 2775-2785
  • Tidskriftsartikel (refereegranskat)abstract
    • Sleep problems relate to brain changes in aging and disease, but the mechanisms are unknown. Studies suggest a relationship between β-amyloid (Aβ) accumulation and sleep, which is likely augmented by interactions with multiple variables. Here, we tested how different cerebrospinal fluid (CSF) biomarkers for brain pathophysiology, brain atrophy, memory function, and depressive symptoms predicted self-reported sleep patterns in 91 cognitively healthy older adults over a 3-year period. The results showed that CSF levels of total- and phosphorylated (P) tau, and YKL-40-a marker of neuroinflammation/astroglial activation-predicted poor sleep in Aβ positive older adults. Interestingly, although brain atrophy was strongly predictive of poor sleep, the relationships between CSF biomarkers and sleep were completely independent of atrophy. A joint analysis showed that unique variance in sleep was explained by P-tau and the P-tau × Aβ interaction, memory function, depressive symptoms, and brain atrophy. The results demonstrate that sleep relates to a range of different pathophysiological processes, underscoring the importance of understanding its impact on neurocognitive changes in aging and people with increased risk of Alzheimer's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (32)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (33)
populärvet., debatt m.m. (1)
Författare/redaktör
Fjell, Anders M. (27)
Walhovd, Kristine B. (27)
Nyberg, Lars, 1966- (20)
Bartrés-Faz, David (16)
Lindenberger, Ulman (15)
Brandmaier, Andreas ... (14)
visa fler...
Sørensen, Øystein (14)
Drevon, Christian A. (13)
Mowinckel, Athanasia ... (12)
Solé-Padullés, Crist ... (12)
Ebmeier, Klaus P. (12)
Düzel, Sandra (11)
Vidal-Piñeiro, Didac (11)
Watne, Leiv Otto (10)
Kühn, Simone (10)
Amlien, Inge K. (10)
Zsoldos, Eniko (9)
Baaré, William F.C. (8)
Madsen, Kathrine Ska ... (8)
Idland, Ane Victoria (8)
Ghisletta, Paolo (8)
Boraxbekk, Carl-Joha ... (7)
Suri, Sana (7)
Wang, Yunpeng (7)
Blennow, Kaj, 1958 (6)
Pudas, Sara, Docent, ... (6)
Kievit, Rogier A. (6)
Zetterberg, Henrik, ... (5)
Bertram, Lars (5)
Walhovd, Kristine Be ... (5)
Nyberg, Lars (4)
Penninx, Brenda W J ... (4)
Knights, Ethan (4)
Demuth, Ilja (4)
Kievit, Rogier (4)
Wagner, Gerd (4)
Sexton, Claire E. (4)
Magnussen, Fredrik (4)
Andersson, Micael (3)
Lundquist, Anders, 1 ... (3)
Wyller, Torgeir Bruu ... (3)
Binnewies, Julia (3)
Nawijn, Laura (3)
Plachti, Anna (3)
Demnitz, Naiara (3)
Fjell, Anders Martin (3)
Sala-Llonch, Roser (3)
Borza, Tom (3)
Brækhus, Anne (3)
Kietzmann, Tim C. (3)
visa färre...
Lärosäte
Umeå universitet (25)
Göteborgs universitet (8)
Lunds universitet (3)
Karolinska Institutet (1)
Språk
Engelska (33)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (29)
Samhällsvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy