SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hu Qitao) "

Sökning: WFRF:(Hu Qitao)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Si, 1982-, et al. (författare)
  • Current gain enhancement for silicon-on-insulator lateral bipolar junction transistors operating at liquid-helium temperature
  • 2020
  • Ingår i: IEEE Electron Device Letters. - 0741-3106 .- 1558-0563. ; 41:6, s. 800-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional homojunction bipolar junction transistors (BJTs) are not suitable for cryogenic operation due to heavy doping-induced emitter band-gap narrowing and strong degradation in current gain (β) at low temperature. In this letter, we show that, on lateral version of the BJTs (LBJTs) fabricated on silicon-on-insulator (SOI) substrate, such β degradation can be mitigated by applying a substrate bias (V sub ), and a β over unity is achieved in a base current (I B ) range over 5 orders of magnitudes at 4.2 K, with a peak β ~ 100 demonstrated. The β improvement is explained by the enhanced electron tunneling through base region as a result of base barrier lowering and thinning by a positive Vsub, which leads to dramatic increase of collector current (IC) while IB is negligibly affected.
  •  
2.
  • Chen, Xi, et al. (författare)
  • Device noise reduction for Silicon nanowire field-effect-transistor based sensors by using a Schottky junction gate
  • 2019
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 4:2, s. 427-433
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of metal-oxide-semiconductor field-effect transistor (MOSFET) based nanoscale sensors is ultimately limited by noise induced by carrier trapping/detrapping processes at the gate oxide/semiconductor interfaces. We have designed a Schottky junction gated silicon nanowire field-effect transistor (SiNW-SJGFET) sensor, where the Schottky junction replaces the noisy oxide/semiconductor interface. Our sensor exhibits significantly reduced noise, 2.1×10-9 V2µm2/Hz at 1 Hz, compared to reference devices with the oxide/semiconductor interface operated at both inversion and depletion modes. Further improvement can be anticipated by wrapping the nanowire by such a Schottky junction thereby eliminating all oxide/semiconductor interfaces. Hence, a combination of the low-noise SiNW-SJGFET sensor device with a sensing surface of the Nernstian response limit holds promises for future high signal-to-noise ratio sensor applications.
  •  
3.
  • Chen, Xi, et al. (författare)
  • Multiplexed analysis of molecular and elemental ions using nanowire transistor sensors
  • 2018
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 270, s. 89-96
  • Tidskriftsartikel (refereegranskat)abstract
    • An integrated sensor chip with silicon nanowire ion-sensitive field-effect transistors for simultaneous and selective detection of both molecular and elemental ions in a single sample solution is demonstrated. The sensing selectivity is realized by functionalizing the sensor surface with tailor-made mixed-matrix membranes (MMM) incorporated with specific ionophores for the target ions. A biomimetic container molecule, named metal-organic supercontainer (MOSC), is selected as the ionophore for detection of methylene blue (MB+), a molecular ion, while a commercially available Na-ionophore is used for Na+, an elemental ion. The sensors show a near-Nernstian response with 56.4 ± 1.8 mV/dec down to a concentration limit of ∌1 ΌM for MB+ and 57.9 ± 0.7 mV/dec down to ∌60 ΌM for Na+, both with excellent reproducibility. Extensive control experiments on the MB+ sensor lead to identification of the critical role of the MOSC molecules in achieving a stable and reproducible potentiometric response. Moreover, the MB+-specific sensor shows remarkable selectivity against common interfering elemental ions in physiological samples, e.g., H+, Na+, and K+. Although the Na+-specific sensor is currently characterized by insufficient immunity to the interference by MB+, the root cause is identified and remedies generally applicable for hydrophobic molecular ions are discussed. River water experiments are also conducted to prove the efficacy of our sensors.
  •  
4.
  • Hu, Qitao, et al. (författare)
  • Current gain and low-frequency noise of symmetric lateral bipolar junction transistors on SOI
  • 2018
  • Ingår i: 2018 48th European Solid-State Device Research Conference (ESSDERC). - 9781538654019 - 9781538654002 - 9781538654026 ; , s. 258-261
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a comprehensive study of symmetric lateral bipolar junction transistors (LBJTs) fabricated on SOI substrate using a CMOS-compatible process; LBJTs find many applications including being a local signal amplifier for silicon-nanowire sensors. Our LBJTs are characterized by a peak gain (β) over 50 and low-frequency noise two orders of magnitude lower than what typically is of the SiO 2 /Si interface for a MOSFET. β is found to decrease at low base current due to recombination in the space charge region at the emitter-base junction and at the surrounding SiO 2 /Si interfaces. This decrease can be mitigated by properly biasing the substrate.
  •  
5.
  • Hu, Qitao, et al. (författare)
  • Effects of Substrate Bias on Low-Frequency Noise in Lateral Bipolar Transistors Fabricated on Silicon-on-Insulator Substrate
  • 2020
  • Ingår i: IEEE Electron Device Letters. - 0741-3106 .- 1558-0563. ; 41:1, s. 4-7
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter presents a systematic study of how the substrate bias (Vsub) modulation affects the current-voltage (I-V) characteristics and low-frequency noise (LFN) of lateral bipolar junction transistors (LBJTs) fabricated on a silicon-on-insulator(SOI) substrate. The current gain (β) of npn LBJTs at low base voltage can be greatly improved bya positive Vsub as a result of enhanced electron injection into the base near the buried oxide (BOX)/silicon interface. However, an excessive positive Vsub may also adversely affect the LFN performance by amplifying the noise generated as a result of carrier trapping and detrapping at that interface. Our results provide a practical guideline for improving both β and the overall noise performance when using our LBJT as a local signal amplifier.
  •  
6.
  •  
7.
  • Hu, Qitao, et al. (författare)
  • Improving Selectivity of Ion-Sensitive Membrane by Polyethylene Glycol Doping
  • 2021
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 328
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrophobic ions can generate considerable interference to ion detection in a complex analyte with membrane-based ion-selective sensors, due to the hydrophobic interaction. In this paper, we demonstrate that the interference from the hydrophobic interaction to the sensors can be significantly reduced by incorporating hydrophilic polyethylene glycol (PEG) into the membrane. The sensor is a silicon nanowire field-effect transistor (SiNWFET) with its surface functionalized with an ionophore-doped mixed-matrix membrane (MMM), where the ionophore is either a commercial Na-ionophore Ⅲ or a novel synthetic metal-organic supercontainer. The incorporation of PEG suppresses the partitioning of hydrophobic ions into the MMM and thus reduces their interference to the detection of target ions. This is evidenced with an improvement in selectivity for Na+ detection in the presence of interfering methylene blue (MB+) ion by more than an order of magnitude. It further enables detection of Na+ and MB+ using a SiNWFET sensor array in a multiplexed manner with controlled susceptivity to cross-interference and a greatly expanded dynamic range.
  •  
8.
  •  
9.
  • Hu, Qitao, et al. (författare)
  • Ion sensing with single charge resolution using sub-10-nm electrical double layer-gated silicon nanowire transistors
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:49
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical sensors have been widely explored for the analysis of chemical/biological species. Ion detection with single charge resolution is the ultimate sensitivity goal of such sensors, which is yet to be experimentally demonstrated. Here, the events of capturing and emitting a single hydrogen ion (H+) at the solid/liquid interface are directly detected using sub-10-nm electrical double layer-gated silicon nanowire field-effect transistors (SiNWFETs). The SiNWFETs are fabricated using a complementary metal-oxide-semiconductor compatible process, with a surface reassembling step to minimize the device noise. An individually activated surface Si dangling bond (DB) acts as the single H+ receptor. Discrete current signals, generated by the single H+-DB interactions via local Coulomb scattering, are directly detected by the SiNWFETs. The single H+-DB interaction kinetics is systematically investigated. Our SiNWFETs demonstrate unprecedented capability for electrical sensing applications, especially for investigating the physics of solid/liquid interfacial interactions at the single charge level.
  •  
10.
  • Hu, Qitao, et al. (författare)
  • Nanotransistor-based gas sensing with record-high sensitivity enabled by electron trapping effect in nanoparticles
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly sensitive, low-power, and chip-scale H2 gas sensors are of great interest to both academia and industry. Field-effect transistors (FETs) functionalized with Pd nanoparticles (PdNPs) have recently emerged as promising candidates for such H2 sensors. However, their sensitivity is limited by weak capacitive coupling between PdNPs and the FET channel. Herein we report a nanoscale FET gas sensor, where electrons can tunnel between the channel and PdNPs and thus equilibrate them. Gas reaction with PdNPs perturbs the equilibrium, and therefore triggers electron transfer between the channel and PdNPs via trapping or de-trapping with the PdNPs to form a new balance. This direct communication between the gas reaction and the channel enables the most efficient signal transduction. Record-high responses to 1–1000 ppm H2 at room temperature with detection limit in the low ppb regime and ultra-low power consumption of ∼300 nW are demonstrated. The same mechanism could potentially be used for ultrasensitive detection of other gases. Our results present a supersensitive FET gas sensor based on electron trapping effect in nanoparticles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy