SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ji Boyang 1983) "

Sökning: WFRF:(Ji Boyang 1983)

  • Resultat 1-10 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Xin, 1980, et al. (författare)
  • Dataset for suppressors of amyloid-beta toxicity and their functions in recombinant protein production in yeast
  • 2022
  • Ingår i: Data in Brief. - : Elsevier BV. - 2352-3409. ; 42
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of recombinant proteins at high levels often induces stress-related phenotypes by protein misfolding or aggregation. These are similar to those of the yeast Alzheimer's disease (AD) model in which amyloid-beta peptides (A beta 42) were accumulated [1,2] . We have previously identified suppressors of A beta 42 cytotoxicity via the genome-wide synthetic genetic array (SGA) [3] and here we use them as metabolic engineering targets to evaluate their potentiality on recombinant protein production in yeast Saccharomyces cerevisiae. In order to investigate the mechanisms linking the genetic modifications to the improved recombinant protein production, we perform systems biology approaches (transcriptomics and proteomics) on the resulting strain and intermediate strains. The RNAseq data are preprocessed by the nf-core/RNAseq pipeline and analyzed using the Platform for Integrative Analysis of Omics (PIANO) package [4] . The quantitative proteome is analyzed on an Orbitrap Fusion Lumos mass spectrometer interfaced with an Easy-nLC1200 liquid chromatography (LC) system. LC-MS data files are processed by Proteome Discoverer version 2.4 with Mascot 2.5.1 as a database search engine. The original data presented in this work can be found in the research paper titled "Suppressors of Amyloid-beta Toxicity Improve Recombinant Protein Produc-tion in yeast by Reducing Oxidative Stress and Tuning Cellu-lar Metabolism", by Chen et al. [5] . (C) 2022 The Author(s). Published by Elsevier Inc.
  •  
2.
  • Chen, Xin, 1980, et al. (författare)
  • Suppressors of amyloid-β toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism
  • 2022
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 72, s. 311-324
  • Tidskriftsartikel (refereegranskat)abstract
    • High-level production of recombinant proteins in industrial microorganisms is often limited by the formation of misfolded proteins or protein aggregates, which consequently induce cellular stress responses. We hypothesized that in a yeast Alzheimer's disease (AD) model overexpression of amyloid-β peptides (Aβ42), one of the main peptides relevant for AD pathologies, induces similar phenotypes of cellular stress. Using this humanized AD model, we previously identified suppressors of Aβ42 cytotoxicity. Here we hypothesize that these suppressors could be used as metabolic engineering targets to alleviate cellular stress and improve recombinant protein production in the yeast Saccharomyces cerevisiae. Forty-six candidate genes were individually deleted and twenty were individually overexpressed. The positive targets that increased recombinant α-amylase production were further combined leading to an 18.7-fold increased recombinant protein production. These target genes are involved in multiple cellular networks including RNA processing, transcription, ER-mitochondrial complex, and protein unfolding. By using transcriptomics and proteomics analyses, combined with reverse metabolic engineering, we showed that reduced oxidative stress, increased membrane lipid biosynthesis and repressed arginine and sulfur amino acid biosynthesis are significant pathways for increased recombinant protein production. Our findings provide new insights towards developing synthetic yeast cell factories for biosynthesis of valuable proteins.
  •  
3.
  • Li, Gang, 1991, et al. (författare)
  • Performance of Regression Models as a Function of Experiment Noise
  • 2021
  • Ingår i: Bioinformatics and Biology Insights. - : SAGE Publications. - 1177-9322. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A challenge in developing machine learning regression models is that it is difficult to know whether maximal performance has been reached on the test dataset, or whether further model improvement is possible. In biology, this problem is particularly pronounced as sample labels (response variables) are typically obtained through experiments and therefore have experiment noise associated with them. Such label noise puts a fundamental limit to the metrics of performance attainable by regression models on the test dataset. Results: We address this challenge by deriving an expected upper bound for the coefficient of determination (R2) for regression models when tested on the holdout dataset. This upper bound depends only on the noise associated with the response variable in a dataset as well as its variance. The upper bound estimate was validated via Monte Carlo simulations and then used as a tool to bootstrap performance of regression models trained on biological datasets, including protein sequence data, transcriptomic data, and genomic data. Conclusions: The new method for estimating upper bounds for model performance on test data should aid researchers in developing ML regression models that reach their maximum potential. Although we study biological datasets in this work, the new upper bound estimates will hold true for regression models from any research field or application area where response variables have associated noise.
  •  
4.
  • Wang, Jinpeng, et al. (författare)
  • Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica – A Review
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 313
  • Forskningsöversikt (refereegranskat)abstract
    • Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
  •  
5.
  •  
6.
  • Abdel-Haleem, Alyaa M., et al. (författare)
  • Integrated Metabolic Modeling, Culturing, and Transcriptomics Explain Enhanced Virulence of Vibrio cholerae during Coinfection with Enterotoxigenic Escherichia coli
  • 2020
  • Ingår i: mSystems. - 2379-5077. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene essentiality is altered during polymicrobial infections. Nevertheless, most studies rely on single-species infections to assess pathogen gene essentiality. Here, we use genome-scale metabolic models (GEMs) to explore the effect of coinfection of the diarrheagenic pathogen Vibrio cholerae with another enteric pathogen, enterotoxigenic Escherichia coli (ETEC). Model predictions showed that V. cholerae metabolic capabilities were increased due to ample cross-feeding opportunities enabled by ETEC. This is in line with increased severity of cholera symptoms known to occur in patients with dual infections by the two pathogens. In vitro co-culture systems confirmed that V. cholerae growth is enhanced in cocultures relative to single cultures. Further, expression levels of several V. cholerae metabolic genes were significantly perturbed as shown by dual RNA sequencing (RNAseq) analysis of its cocultures with different ETEC strains. A decrease in ETEC growth was also observed, probably mediated by nonmetabolic factors. Single gene essentiality analysis predicted conditionally independent genes that are essential for the pathogen's growth in both single-infection and coinfection scenarios. Our results reveal growth differences that are of relevance to drug targeting and efficiency in polymicrobial infections. IMPORTANCE Most studies proposing new strategies to manage and treat infections have been largely focused on identifying druggable targets that can inhibit a pathogen's growth when it is the single cause of infection. In vivo, however, infections can be caused by multiple species. This is important to take into account when attempting to develop or use current antibacterials since their efficacy can change significantly between single infections and coinfections. In this study, we used genome-scale metabolic models (GEMs) to interrogate the growth capabilities of Vibrio cholerae in single infections and coinfections with enterotoxigenic E. coli (ETEC), which cooccur in a large fraction of diarrheagenic patients. Coinfection model predictions showed that V. cholerae growth capabilities are enhanced in the presence of ETEC relative to V. cholerae single infection, through cross-fed metabolites made available to V. cholerae by ETEC. In vitro, cocultures of the two enteric pathogens further confirmed model predictions showing an increased growth of V. cholerae in coculture relative to V. cholerae single cultures while ETEC growth was suppressed. Dual RNAseq analysis of the cocultures also confirmed that the transcriptome of V. cholerae was distinct during coinfection compared to single-infection scenarios where processes related to metabolism were significantly perturbed. Further, in silico gene-knockout simulations uncovered discrepancies in gene essentiality for V. cholerae growth between single infections and coinfections. Integrative model-guided analysis thus identified druggable targets that would be critical for V. cholerae growth in both single infections and coinfections; thus, designing inhibitors against those targets would provide a broader spectrum of coverage against cholera infections.
  •  
7.
  • Babaei, Parizad, 1990, et al. (författare)
  • Challenges in modeling the human gut microbiome
  • 2018
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 36:8, s. 682-686
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Belda, E., et al. (författare)
  • Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism
  • 2022
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 71:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity.
  •  
9.
  • Chen, Xin, 1980, et al. (författare)
  • FMN reduces Amyloid-beta toxicity in yeast by regulating redox status and cellular metabolism
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-beta peptides (A beta) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of A beta 42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce A beta 42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH+NAD(+)) and NADPH/(NADPH+NADP(+)) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and alpha-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of A beta 42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.Saccharomyces cerevisiae is a model organism to study proteins involved in neurodegeneration. Here, the authors performed a yeast genome-wide synthetic genetic interaction array (SGA) to screen for toxicity modifiers of A beta 42 and identify riboflavin kinase and its metabolic product flavin mononucleotide as modulators that alleviate cellular A beta 42 toxicity, which is supported by further experimental analyses.
  •  
10.
  • Chen, Xin, 1980, et al. (författare)
  • Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid-beta (A beta) Toxicity in Yeast
  • 2017
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive neurodegeneration. Oligomers of amyloid-beta peptides (A beta) are thought to play a pivotal role in AD pathogenesis, yet the mechanisms involved remain unclear. Two major isoforms of A beta associated with AD are A beta 40 and A beta 42, the latter being more toxic and prone to form oligomers. Here, we took a systems biology approach to study two humanized yeast AD models which expressed either A beta 40 or A beta 42 in bioreactor cultures. Strict control of oxygen availability and culture pH, strongly affected chronological lifespan and reduced variations during cell growth. Reduced growth rates and biomass yields were observed upon A beta 42 expression, indicating a redirection of energy from growth to maintenance. Quantitative physiology analyses furthermore revealed reduced mitochondria' functionality and ATP generation in A beta 42 expressing cells, which matched with observed aberrant mitochondria' structures. Genome-wide expression level analysis showed that A beta 42 expression triggered strong ER stress and unfolded protein responses. Equivalent expression of A beta 40, however, induced only mild ER stress, which resulted in hardly affected physiology. Using AD yeast models in well controlled cultures strengthened our understanding on how cells translate different A beta toxicity signals into particular cell fate programs, and further enhance their potential as a discovery platform to identify possible therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60
Typ av publikation
tidskriftsartikel (50)
forskningsöversikt (10)
Typ av innehåll
refereegranskat (58)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ji, Boyang, 1983 (60)
Nielsen, Jens B, 196 ... (37)
Bäckhed, Fredrik, 19 ... (6)
Mijakovic, Ivan, 197 ... (5)
Das, Promi, 1990 (5)
Tremaroli, Valentina ... (4)
visa fler...
Chen, Xin, 1980 (4)
Petranovic Nielsen, ... (4)
Olsson, Lisa M., 198 ... (3)
Clement, K (3)
Vestergaard, H. (3)
Siewers, Verena, 197 ... (3)
Chilloux, J. (3)
Stumvoll, M. (3)
Babaei, Parizad, 199 ... (3)
Mineta, Katsuhiko (2)
Gao, Xin (2)
Lorentzon, Mattias, ... (2)
Kober, L. (2)
Bork, P. (2)
Roos, Stefan (2)
Zelezniak, Aleksej, ... (2)
Hansen, T. (2)
Gotze, J. P. (2)
Caesar, Robert, 1973 (2)
Hansen, T. H. (2)
Nielsen, T. (2)
Raes, J (2)
Ledesma-Amaro, R. (2)
Hoyles, L. (2)
Pedersen, O. B. (2)
Dumas, M. E. (2)
Kovatcheva-Datchary, ... (2)
Shoaie, Saeed, 1985 (2)
Aron-Wisnewsky, J. (2)
Chakaroun, R. (2)
Le Chatelier, E. (2)
Belda, E. (2)
Falony, G. (2)
Fellahi, S. (2)
Galleron, N. (2)
Pedersen, H. K. (2)
Lewinter, C. (2)
Myridakis, A. (2)
Pons, N. (2)
Quinquis, B. (2)
Rouault, C. (2)
Roume, H. (2)
Salem, J. E. (2)
Sondertoft, N. B. (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (60)
Göteborgs universitet (15)
Kungliga Tekniska Högskolan (3)
Karolinska Institutet (2)
Uppsala universitet (1)
Stockholms universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (60)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (44)
Medicin och hälsovetenskap (32)
Teknik (16)
Lantbruksvetenskap (6)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy