SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lambrechts Michiel) "

Sökning: WFRF:(Lambrechts Michiel)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Appelgren, Johan, et al. (författare)
  • Dust clearing by radial drift in evolving protoplanetary discs
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent surveys have revealed that protoplanetary discs typically have dust masses that appear to be insufficient to account for the high occurrence rate of exoplanet systems. We demonstrate that this observed dust depletion is consistent with the radial drift of pebbles. Using a Monte Carlo method we simulate the evolution of a cluster of protoplanetary discs using a 1D numerical method to viscously evolve each gas disc together with the radial drift of dust particles that have grown to 100 μm in size. For a 2 Myr-old cluster of stars, we find a slightly sublinear scaling between the gas disc mass and the gas accretion rate (Mg Ṁ 0.9). However, for the dust mass we find that evolved dust discs have a much weaker scaling with the gas accretion rate, with the precise scaling depending on the age at which the cluster is sampled and the intrinsic age spread of the discs in the cluster. Ultimately, we find that the dust mass present in protoplanetary discs is on the order of 10-100 M- in 1-3 Myr-old star-forming regions, a factor of 10-100 depleted from the original dust budget. As the dust drains from the outer disc, pebbles pile up in the inner disc and locally increase the dust-to-gas ratio by up to a factor of four above the initial value. In these regions of high dust-to-gas ratio we find conditions that are favourable for planetesimal formation via the streaming instability and subsequent growth by pebble accretion. We also find the following scaling relations with stellar mass within a 1-2 Myr-old cluster: a slightly super-linear scaling between the gas accretion rate and stellar mass (Ṁ M-1.4), a slightly super-linear scaling between the gas disc mass and the stellar mass (Mg M-1.4), and a super-linear relation between the dust disc mass and stellar mass (Md M-1.4-4.1).
  •  
2.
  • Arnadottir, Anna, et al. (författare)
  • The Meridian S01E01 : Planet formation on the Astronomy Day and Night
  • 2021
  • Konstnärligt arbete (övrigt vetenskapligt/konstnärligt)abstract
    • In this first episode of the podcast Nic and Rebecca invite Michiel Lambrechts to the mic and chat to him about planet formation. Thereafter they take a closer look at one of their favourite astronomical objects: Le Verrier's planet.
  •  
3.
  • Bitsch, Bertram, et al. (författare)
  • Formation of planetary systems by pebble accretion and migration : Growth of gas giants
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant planets migrate though the protoplanetary disc as they grow their solid core and attract their gaseous envelope. Previously, we have studied the growth and migration of an isolated planet in an evolving disc. Here, we generalise such models to include the mutual gravitational interaction between a high number of growing planetary bodies. We have investigated how the formation of planetary systems depends on the radial flux of pebbles through the protoplanetary disc and on the planet migration rate. Our N-body simulations confirm previous findings that Jupiter-like planets in orbits outside the water ice line originate from embryos starting out at 20-40 AU when using nominal type-I and type-II migration rates and a pebble flux of approximately 100-200 Earth masses per million years, enough to grow Jupiter within the lifetime of the solar nebula. The planetary embryos placed up to 30 AU migrate into the inner system (r P < 1AU). There they form super-Earths or hot and warm gas giants, producing systems that are inconsistent with the configuration of the solar system, but consistent with some exoplanetary systems. We also explored slower migration rates which allow the formation of gas giants from embryos originating from the 5-10 AU region, which are stranded exterior to 1 AU at the end of the gas-disc phase. These giant planets can also form in discs with lower pebbles fluxes (50-100 Earth masses per Myr). We identify a pebble flux threshold below which migration dominates and moves the planetary core to the inner disc, where the pebble isolation mass is too low for the planet to accrete gas efficiently. In our model, giant planet growth requires a sufficiently high pebble flux to enable growth to out-compete migration. An even higher pebble flux produces systems with multiple gas giants. We show that planetary embryos starting interior to 5 AU do not grow into gas giants, even if migration is slow and the pebble flux is large. These embryos instead grow to just a few Earth masses, the mass regime of super-Earths. This stunted growth is caused by the low pebble isolation mass in the inner disc and is therefore independent of the pebble flux. Additionally, we show that the long-term evolution of our formed planetary systems can naturally produce systems with inner super-Earths and outer gas giants as well as systems of giant planets on very eccentric orbits.
  •  
4.
  • Bitsch, Bertram, et al. (författare)
  • Pebble-isolation mass : Scaling law and implications for the formation of super-Earths and gas giants
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τ f < 0.005 can drift through the partial gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.
  •  
5.
  • Bitsch, Bertram, et al. (författare)
  • The growth of planets by pebble accretion in evolving protoplanetary discs
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of planets depends on the underlying protoplanetary disc structure, which in turn influences both the accretion and migration rates of embedded planets. The disc itself evolves on time scales of several Myr, during which both temperature and density profiles change as matter accretes onto the central star. Here we used a detailed model of an evolving disc to determine the growth of planets by pebble accretion and their migration through the disc. Cores that reach their pebble isolation mass accrete gas to finally form giant planets with extensive gas envelopes, while planets that do not reach pebble isolation mass are stranded as ice giants and ice planets containing only minor amounts of gas in their envelopes. Unlike earlier population synthesis models, our model works without any artificial reductions in migration speed and for protoplanetary discs with gas and dust column densities similar to those inferred from observations. We find that in our nominal disc model, the emergence of planetary embryos preferably should occur after approximately 2 Myr in order to not exclusively form gas giants, but also ice giants and smaller planets. The high pebble accretion rates ensure that critical core masses for gas accretion can be reached at all orbital distances. Gas giant planets nevertheless experience significant reduction in semi-major axes by migration. Considering instead planetesimal accretion for planetary growth, we show that formation time scales are too long to compete with the migration time scales and the dissipation time of the protoplanetary disc. All in all, we find that pebble accretion overcomes many of the challenges in the formation of ice and gas giants in evolving protoplanetary discs.
  •  
6.
  •  
7.
  • Bitsch, Bertram, et al. (författare)
  • The structure of protoplanetary discs around evolving young stars
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required.
  •  
8.
  • Bosman, Arthur D., et al. (författare)
  • A Potential Site for Wide-orbit Giant Planet Formation in the IM Lup Disk
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The radial transport, or drift, of dust has taken a critical role in giant planet formation theory. However, it has been challenging to identify dust drift pileups in the hard-to-observe inner disk. We find that the IM Lup disk shows evidence that it has been shaped by an episode of dust drift. Using radiative transfer and dust dynamical modeling we study the radial and vertical dust distribution. We find that high dust drift rates exceeding 110 M ⊕ Myr−1 are necessary to explain both the dust and CO observations. Furthermore, the bulk of the large dust present in the inner 20 au needs to be vertically extended, implying high turbulence (α z ≳ 10−3) and small grains (0.2-1 mm). We suggest that this increased level of particle stirring is consistent with the inner dust-rich disk undergoing turbulence triggered by the vertical shear instability. The conditions in the IM Lup disk imply that giant planet formation through pebble accretion is only effective outside of 20 au. If such an early, high-turbulence inner region is a natural consequence of high dust drift rates, then this has major implications for understanding the formation regions of giant planets including Jupiter and Saturn.
  •  
9.
  • Capelo, Holly L., et al. (författare)
  • Observation of aerodynamic instability in the flow of a particle stream in a dilute gas
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Forming macroscopic solid bodies in circumstellar discs requires local dust concentration levels significantly higher than the mean. Interactions of the dust particles with the gas must serve to augment local particle densities, and facilitate growth past barriers in the metre size range. Amongst a number of mechanisms that can amplify the local density of solids, aerodynamic streaming instability (SI) is one of the most promising. This work tests the physical assumptions of models that lead to SI in protoplanetary discs (PPDs). We conduct laboratory experiments in which we track the three-dimensional motion of spherical solid particles fluidised in a low-pressure, laminar, incompressible, gas stream. The particle sizes span the Stokes-Epstein drag regime transition and the overall dust-to-gas mass density ratio, is close to unity. A recently published study establishes the similarity of the laboratory flow to a simplified PPD model flow. We study velocity statistics and perform time-series analysis of the advected flow to obtain experimental results suggesting an instability due to particle-gas interaction: (i) there exist variations in particle concentration in the direction of the mean relative motion between the gas and the particles, that is the direction of the mean drag forces; (ii) the particles have a tendency to catch up to one another when they are in proximity; (iii) particle clumping occurs on very small scales, which implies local enhancements above the background by factors of several tens; (iv) the presence of these density enhancements occurs for a mean approaching or greater than 1; (v) we find evidence for collective particle drag reduction when the local particle number density becomes high and when the background gas pressure is high so that the drag is in the continuum regime. The experiments presented here are precedent-setting for observing SI under controlled conditions and may lead to a deeper understanding of how it operates in nature.
  •  
10.
  • Capelo, Holly L., et al. (författare)
  • Studies of gas-particle interaction : Implications for the streaming instability in protoplanetary disks
  • 2020
  • Konferensbidrag (refereegranskat)abstract
    • We present the early results from a novel experiment to study a particle-laden flow, under a parameter regime relevant to the conditions in planet-forming systems. We investigate the gas-particle interactions to identify the presence of and details regarding the streaming instability, which is theoretically predicted to aid the coalescence of small dust grains to form planetesimals - the macroscopic objects that will eventually interact gravitationally and become planets. We vary properties of the system such as dust-to-gas ratio, relative particle-gas velocity and gas pressure, for comparison to numerical simulations of protoplanetary disks. Experimentally calibrated numerical calculations of the particle motion within the instability regions will be used to model the evolution of protoplanetary disks at the scale of small dust grains, representing an unprecedented precision in our understanding of these difficult to study systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (28)
konstnärligt arbete (1)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lambrechts, Michiel (30)
Johansen, Anders (25)
Appelgren, Johan (3)
Jacobson, S (1)
Sanak, Marek (1)
Maitland-Van der Zee ... (1)
visa fler...
Held, Claes, 1956- (1)
Simon, Tabassome (1)
Fox, Kim (1)
Melander, Olle (1)
Smith, J Gustav (1)
Brenner, Hermann (1)
Sattar, Naveed (1)
Torp-Pedersen, Chris ... (1)
Deloukas, Panos (1)
Lotufo, Paulo A. (1)
Marz, Winfried (1)
Ronnet, Thomas (1)
Lambrechts, Diether (1)
James, Stefan, 1964- (1)
Almgren, Peter (1)
Hagström, Emil (1)
Paré, Guillaume (1)
Richards, A. Mark (1)
Henning, Thomas (1)
Wallentin, Lars, 194 ... (1)
Visseren, Frank L. J ... (1)
Van de Werf, Frans (1)
Timmis, Adam (1)
Fox, Keith A. A. (1)
Hemingway, Harry (1)
Thiery, Joachim (1)
Nelson, Christopher ... (1)
Samani, Nilesh J. (1)
Nikus, Kjell (1)
de Faire, Ulf (1)
Sun, Yan V. (1)
Leander, Karin (1)
Gigante, Bruna (1)
Siegbahn, Agneta, 19 ... (1)
Metspalu, Andres (1)
Brugts, Jasper J. (1)
Ten Berg, Jurrien M (1)
Lagerqvist, Bo, 1952 ... (1)
Åkerblom, Axel, 1977 ... (1)
Lehtimaki, Terho (1)
Newton-Cheh, Christo ... (1)
Arnadottir, Anna (1)
Borsato, Nicholas (1)
Forsberg, Rebecca (1)
visa färre...
Lärosäte
Lunds universitet (30)
Uppsala universitet (1)
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy