SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lenton Timothy) "

Sökning: WFRF:(Lenton Timothy)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrams, Jesse F., et al. (författare)
  • Committed Global Warming Risks Triggering Multiple Climate Tipping Points
  • 2023
  • Ingår i: Earth's Future. - 2328-4277. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Many scenarios for limiting global warming to 1.5(degrees)C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium committed warming, captured in the concept of equilibrium climate sensitivity. This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5(degrees)C threshold and the 2.0(degrees)C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events.
  •  
2.
  • Armstrong McKay, David I., et al. (författare)
  • Exceeding 1.5°C global warming could trigger multiple climate tipping points
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 377:6611
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global “core” tipping elements and regional “impact” tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies. 
  •  
3.
  • Armstrong McKay, David I., et al. (författare)
  • Reduced carbon cycle resilience across the Palaeocene-Eocene Thermal Maximum
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:10, s. 1515-1527
  • Tidskriftsartikel (refereegranskat)abstract
    • Several past episodes of rapid carbon cycle and climate change are hypothesised to be the result of the Earth system reaching a tipping point beyond which an abrupt transition to a new state occurs. At the Palaeocene-Eocene Thermal Maximum (PETM) at similar to 56 Ma and at subsequent hyperthermal events, hypothesised tipping points involve the abrupt transfer of carbon from surface reservoirs to the atmosphere. Theory suggests that tipping points in complex dynamical systems should be preceded by critical slowing down of their dynamics, including increasing temporal auto-correlation and variability. However, reliably detecting these indicators in palaeorecords is challenging, with issues of data quality, false positives, and parameter selection potentially affecting reliability. Here we show that in a sufficiently long, high-resolution palaeorecord there is consistent evidence of destabilisation of the carbon cycle in the similar to 1.5 Myr prior to the PETM, elevated carbon cycle and climate instability following both the PETM and Eocene Thermal Maximum 2 (ETM2), and different drivers of carbon cycle dynamics preceding the PETM and ETM2 events. Our results indicate a loss of resilience (weakened stabilising negative feedbacks and greater sensitivity to small shocks) in the carbon cycle before the PETM and in the carbon-climate system following it. This pre-PETM carbon cycle destabilisation may reflect gradual forcing by the contemporaneous North Atlantic Volcanic Province eruptions, with volcanism-driven warming potentially weakening the organic carbon burial feedback. Our results are consistent with but cannot prove the existence of a tipping point for abrupt carbon release, e.g. from methane hydrate or terrestrial organic carbon reservoirs, where as we find no support for a tipping point in deep ocean temperature.
  •  
4.
  • Boysen, Lena R., et al. (författare)
  • The limits to global-warming mitigation by terrestrial carbon removal
  • 2017
  • Ingår i: Earth's Future. - 2328-4277. ; 5:5, s. 463-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive near-term greenhouse gas emissions reduction is a precondition for staying well below 2 degrees C global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature overshoot in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to repair delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5 degrees C or even 4.5 degrees C above pre-industrial level. Our results show that those tCDR measures are unable to counteract business-as-usual emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of > 50% of natural forests. In addition, > 100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2 degrees C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable supporting actor for strong mitigation if sustainable schemes are established immediately. Plain Language Summary In 2015, parties agreed to limit global warming to well below 2 degrees C above pre-industrial levels. However, this requires not only massive near-term greenhouse gas emissions reductions but also the application of negative emission techniques that extract already emitted carbon dioxide from the atmosphere. Specifically, this could refer to the establishment of extensive plantations of fast-growing tree and grass species in combination with biomass conversion to carbon-saving products. Although such deployment is seen as promising, its carbon sequestration potentials and possible side-effects still remain to be studied in depth. In this study, we analyzed two feasibility aspects of such a negative emissions approach using biomass plantations and carbon utilization pathways. First, we show that biomass plantations with subsequent carbon immobilization are likely unable to repair insufficient emission reduction policies without compromising food production and biosphere functioning due to its space-consuming properties. Second, the requirements for a strong mitigation scenario staying below the 2 degrees C target would require a combination of high irrigation water input and development of highly effective carbon process chains. Although we find that this strategy of sequestering carbon is not a viable alternative to aggressive emission reductions, it could still support mitigation efforts if sustainably managed.
  •  
5.
  • Brovkin, Victor, et al. (författare)
  • Past abrupt changes, tipping points and cascading impacts in the Earth system
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14:8, s. 550-558
  • Forskningsöversikt (refereegranskat)abstract
    • A synthesis of intervals of rapid climatic change evident in the geological record reveals some of the Earth system processes and tipping points that could lead to similar events in the future. The geological record shows that abrupt changes in the Earth system can occur on timescales short enough to challenge the capacity of human societies to adapt to environmental pressures. In many cases, abrupt changes arise from slow changes in one component of the Earth system that eventually pass a critical threshold, or tipping point, after which impacts cascade through coupled climate-ecological-social systems. The chance of detecting abrupt changes and tipping points increases with the length of observations. The geological record provides the only long-term information we have on the conditions and processes that can drive physical, ecological and social systems into new states or organizational structures that may be irreversible within human time frames. Here, we use well-documented abrupt changes of the past 30 kyr to illustrate how their impacts cascade through the Earth system. We review useful indicators of upcoming abrupt changes, or early warning signals, and provide a perspective on the contributions of palaeoclimate science to the understanding of abrupt changes in the Earth system.
  •  
6.
  • Dearing, John A., et al. (författare)
  • Safe and just operating spaces for regional social-ecological systems
  • 2014
  • Ingår i: Global Environmental Change. - : Elsevier BV. - 0959-3780 .- 1872-9495. ; 28, s. 227-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Humanity faces a major global challenge in achieving wellbeing for all, while simultaneously ensuring that the biophysical processes and ecosystem services that underpin wellbeing are exploited within scientifically informed boundaries of sustainability. We propose a framework for defining the safe and just operating space for humanity that integrates social wellbeing into the original planetary boundaries concept (Rockstrom et al., 2009a,b) for application at regional scales. We argue that such a framework can: (1) increase the policy impact of the boundaries concept as most governance takes place at the regional rather than planetary scale; (2) contribute to the understanding and dissemination of complexity thinking throughout governance and policy-making; (3) act as a powerful metaphor and communication tool for regional equity and sustainability. We demonstrate the approach in two rural Chinese localities where we define the safe and just operating space that lies between an environmental ceiling and a social foundation from analysis of time series drawn from monitored and palaeoecological data, and from social survey statistics respectively. Agricultural intensification has led to poverty reduction, though not eradicated it, but at the expense of environmental degradation. Currently, the environmental ceiling is exceeded for degraded water quality at both localities even though the least well-met social standards are for available piped water and sanitation. The conjunction of these social needs and environmental constraints around the issue of water access and quality illustrates the broader value of the safe and just operating space approach for sustainable development.
  •  
7.
  • Gupta, Joyeeta, et al. (författare)
  • Earth system justice needed to identify and live within Earth system boundaries
  • 2023
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 6:6, s. 630-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries. 
  •  
8.
  • Lenton, Timothy M., et al. (författare)
  • A resilience sensing system for the biosphere
  • 2022
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 377:1857
  • Tidskriftsartikel (refereegranskat)abstract
    • We are in a climate and ecological emergency, where climate change and direct anthropogenic interference with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective awareness and action are modest at best. Here, we highlight the potential for a biosphere resilience sensing system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and temporal resolution through satellite remote sensing, utilizing the generic mathematical behaviour of complex systems—loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how resilience sensing nested across global, biome-ecoregion, and local ecosystem scales could aid management and governance at these different scales, and identify priorities for further work.
  •  
9.
  • Lenton, Timothy M., et al. (författare)
  • Earliest land plants created modern levels of atmospheric oxygen
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:35, s. 9704-9709
  • Tidskriftsartikel (refereegranskat)abstract
    • The progressive oxygenation of the Earth's atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O-2) first approached modern levels (similar to 21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435-392 Ma, and the appearance of fossil charcoal indicates O-2 > 15-17% by 420-400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from similar to 470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burialthe net long-term source of O-2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved similar to 30% of today's global terrestrial net primary productivity by similar to 445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (similar to 2,000) than marine biomass (similar to 100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2% increase in the carbonate carbon isotope (delta C-13) record by similar to 445 Ma, and predict a corresponding rise in O-2 to present levels by 420-400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O-2 levels.
  •  
10.
  • Obura, David O., et al. (författare)
  • Achieving a nature- and people-positive future
  • 2023
  • Ingår i: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 6:2, s. 105-117
  • Forskningsöversikt (refereegranskat)abstract
    • Despite decades of increasing investment in conservation, we have not succeeded in “bending the curve” of biodiversity decline. Efforts to meet new targets and goals for the next three decades risk repeating this outcome due to three factors: neglect of increasing drivers of decline; unrealistic expectations and time frames of biodiversity recovery; and insufficient attention to justice within and between generations and across countries. Our Earth system justice approach identifies six sets of actions that when tackled simultaneously address these failings: (1) reduce and reverse direct and indirect drivers causing decline; (2) halt and reverse biodiversity loss; (3) restore and regenerate biodiversity to a safe state; (4) raise minimum wellbeing for all; (5) eliminate over-consumption and excesses associated with accumulation of capital; and (6) uphold and respect the rights and responsibilities of all communities, present and future. Current conservation campaigns primarily address actions 2 and 3, with urgent upscaling of actions 1, 4, 5, and 6 needed to help deliver the post-2020 global biodiversity framework.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy