SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lubberink Mark) "

Sökning: WFRF:(Lubberink Mark)

  • Resultat 1-10 av 310
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Knudsen, Gitte M, et al. (författare)
  • Guidelines for the content and format of PET brain data in publications and archives : A consensus paper
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 40:8, s. 1576-1585
  • Tidskriftsartikel (refereegranskat)abstract
    • It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.
  •  
2.
  • Nørgaard, Martin, et al. (författare)
  • Cerebral serotonin transporter measurements with [11C]DASB : A review on acquisition and preprocessing across 21 PET centres
  • 2019
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 0271-678X .- 1559-7016. ; 39:2, s. 210-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Positron Emission Tomography (PET) imaging has become a prominent tool to capture the spatiotemporal distribution of neurotransmitters and receptors in the brain. The outcome of a PET study can, however, potentially be obscured by suboptimal and/or inconsistent choices made in complex processing pipelines required to reach a quantitative estimate of radioligand binding. Variations in subject selection, experimental design, data acquisition, preprocessing, and statistical analysis may lead to different outcomes and neurobiological interpretations. We here review the approaches used in 105 original research articles published by 21 different PET centres, using the tracer [11C]DASB for quantification of cerebral serotonin transporter binding, as an exemplary case. We highlight and quantify the impact of the remarkable variety of ways in which researchers are currently conducting their studies, while implicitly expecting generalizable results across research groups. Our review provides evidence that the foundation for a given choice of a preprocessing pipeline seems to be an overlooked aspect in modern PET neuroscience. Furthermore, we believe that a thorough testing of pipeline performance is necessary to produce reproducible research outcomes, avoiding biased results and allowing for better understanding of human brain function.
  •  
3.
  • Silins, Isabella, 1983-, et al. (författare)
  • First-in-human evaluation of [18F]CETO : a novel tracer for adrenocortical tumours
  • 2023
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Nature. - 1619-7070 .- 1619-7089. ; 50:2, s. 398-409
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose[11C]Metomidate positron emission tomography (PET) is currently used for staging of adrenocortical carcinoma and for lateralization in primary aldosteronism (PA). Due to the short half-life of carbon-11 and a high non-specific liver uptake of [11C]metomidate there is a need for improved adrenal imaging methods. In a previous pre-clinical study para-chloro-2-[18F]fluoroethyletomidate has been proven to be a specific adrenal tracer. The objective is to perform a first evaluation of para-chloro-2-[18F]fluoroethyletomidate positron emission computed tomography ([18F]CETO-PET/CT) in patients with adrenal tumours and healthy volunteers.MethodsFifteen patients underwent [18F]CETO-PET/CT. Five healthy volunteers were recruited for test-retest analysis and three out of the five underwent additional [15O]water PET/CT to measure adrenal blood flow. Arterial blood sampling and tracer metabolite analysis was performed. The kinetics of [18F]CETO were assessed and simplified quantitative methods were validated by comparison to outcome measures of tracer kinetic analysis.ResultsUptake of [18F]CETO was low in the liver and high in adrenals. Initial metabolization was rapid, followed by a plateau. The kinetics of [18F]CETO in healthy adrenals and all adrenal pathologies, except for adrenocortical carcinoma, were best described by an irreversible single-tissue compartment model. Standardized uptake values (SUV) correlated well with the uptake rate constant K1. Both K1 and SUV were highly correlated to adrenal blood flow in healthy controls. Repeatability coefficients of K1, SUV65–70, and SUV120 were 25, 22, and 17%.ConclusionsHigh adrenal uptake combined with a low unspecific liver uptake suggests that 18F]CETO is a suitable tracer for adrenal imaging. Adrenal SUV, based on a whole-body scan at 1 h p.i., correlated well with the net uptake rate Ki.Trial registrationClinicalTrials.gov, NCT05361083 Retrospectively registered 29 April 2022. at, https://clinicaltrials.gov/ct2/show/NCT05361083
  •  
4.
  • Silins, Isabella, 1983-, et al. (författare)
  • Radiation dosimetry of para-chloro-2-[18F]fluoroethyl-etomidate:a PET tracer for adrenocortical imaging
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction[11C]metomidate, a methyl ester analogue of etomidate, is used for positron emission tomography of adrenocortical cancer, and has been tested in recent clinical trials for lateralization in primary aldosteronism (PA). However, in PA, visualization as well as uptake quantification are hampered by the tracer’s rather high non-specific liver uptake, and its overall clinical usefulness is also limited by the short 20-minute half-life of carbon-11. Therefore, we evaluated para-chloro-2-[18F]fluoroethyl-etomidate, [18F]CETO, a fluorine-18 (T1/2=109.8 min) analogue, as a potential new adrenocortical PET tracer.ObjectivesThe aim of this study was to assess in vivo and in-human radiation dosimetry of [18F]CETO.Methods: Residence times were calculated based on uptake data from rats (n=30, biodistribution study with ex vivo measurements) as well as in vivo PET/CT in cynomolgus (n=1) and humans (n=9). OLINDA 1.1 was used to obtain absorbed doses in human organs (mGy/MBq) and effective dose (mSv/MBq).Results[18F]CETO showed a high uptake in human adrenal glands, still increasing at 90 minutes post injection. Regardless of species used for input data (rat, cynomolgus or human), adrenal glands (absorbed dose 0.093 ± 0.038 mGy/MBq based on human data) were confirmed as the dose-limiting organs. The effective dose based on human data was 18.2 μSv/MBq and varied little when using rat (18.4 μSv/MBq) or cynomolgus data (16.1 μSv/MBq).  Conclusions[18F]CETO has a favourable biodistribution in humans for adrenal imaging. The effective dose for a typical clinical PET/CT examination with 200 MBq [18F]CETO  is 3.6 mSv.
  •  
5.
  •  
6.
  • Alhuseinalkhudhur, Ali (författare)
  • HER2-receptor quantification in breast cancer patients by imaging with ABY-025 Affibody and PET
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Breast cancer is the most common malignancy in women worldwide. Human epidermal growth factor receptor type 2 (HER2) is overexpressed in up to 20% of breast cancer cases and is considered an important prognostic factor and a therapeutic target. With the introduction of HER2-targeted therapy, it was important to recognize patients who will likely benefit from such treatment. Immunohistochemistry staining performed on a tumor biopsy, with in situ hybridization to detect gene amplification if needed, is the current gold standard method for HER2 receptor quantification. However, in cases with multiple metastases, it is both unfeasible and impractical to perform multiple biopsies without risking higher morbidity. Molecular imaging with tracers specifically targeting HER2 receptors provides a non-invasive approach, which allows full body quantification without the serious side effects associated with invasive biopsies. The molecule of focus in this thesis work is Affibody ZHER2:2891 (ABY-025) molecule that has a high affinity and selectivity towards HER2 receptors.This thesis is based on four original articles. The first part focused on the aspect of breast cancer imaging using HER2-targeting gallium-labeled tracer 68Ga-ABY-025 in positron emission tomography (PET) and its role in predicting breast cancer outcome. The second part was to investigate the effect of different risk factors on developing brain metastasis, the overall survival and the effect of HER2-targeted treatment on breast cancer brain metastasis based on Uppsala County cancer registry.We demonstrated that HER2-binding Affibody PET kinetics can be explained using a two-tissue compartment model and SUV values correlated well with the influx rates calculated using kinetic modeling, supporting its use to measure actual HER2 receptor binding. Phase II study demonstrated the potential of 68Ga-ABY-025 PET to predict the treatment outcome more accurately compared to biopsy HER2-status that uses the traditional immunohistochemistry staining and in situ hybridization techniques. 68Ga-ABY-025 PET provided accurate staging and reduced false positive 18F-FDG PET results in HER2-positive cases. HER2-positive molecular subtypes were associated with an increased risk of developing brain metastasis. Yet, longer survival times were observed in HER2-positive subtypes receiving HER2-targeted therapy.
  •  
7.
  • Alhuseinalkhudhur, Ali, et al. (författare)
  • Human Epidermal Growth Factor Receptor 2-Targeting [68Ga]Ga-ABY-025 PET/CT Predicts Early Metabolic Response in Metastatic Breast Cancer.
  • 2023
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 64:9, s. 1364-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging using the human epidermal growth factor receptor 2 (HER2)-binding tracer 68Ga-labeled ZHER2:2891-Cys-MMA-DOTA ([68Ga]Ga-ABY-025) was shown to reflect HER2 status determined by immunohistochemistry and in situ hybridization in metastatic breast cancer (MBC). This single-center open-label phase II study investigated how [68Ga]Ga-ABY-025 uptake corresponds to biopsy results and early treatment response in both primary breast cancer (PBC) planned for neoadjuvant chemotherapy and MBC. Methods: Forty patients with known positive HER2 status were included: 19 with PBC and 21 with MBC (median, 3 previous treatments). [68Ga]Ga-ABY-025 PET/CT, [18F]F-FDG PET/CT, and core-needle biopsies from targeted lesions were performed at baseline. [18F]F-FDG PET/CT was repeated after 2 cycles of therapy to calculate the directional change in tumor lesion glycolysis (Δ-TLG). The largest lesions (up to 5) were evaluated in all 3 scans per patient. SUVs from [68Ga]Ga-ABY-025 PET/CT were compared with the biopsied HER2 status and Δ-TLG by receiver operating characteristic analyses. Results: Trial biopsies were HER2-positive in 31 patients, HER2-negative in 6 patients, and borderline HER2-positive in 3 patients. The [68Ga]Ga-ABY-025 PET/CT cutoff SUVmax of 6.0 predicted a Δ-TLG lower than -25% with 86% sensitivity and 67% specificity in soft-tissue lesions (area under the curve, 0.74 [95% CI, 0.67-0.82]; P = 0.01). Compared with the HER2 status, this cutoff resulted in clinically relevant discordant findings in 12 of 40 patients. Metabolic response (Δ-TLG) was more pronounced in PBC (-71% [95% CI, -58% to -83%]; P < 0.0001) than in MBC (-27% [95% CI, -16% to -38%]; P < 0.0001), but [68Ga]Ga-ABY-025 SUVmax was similar in both with a mean SUVmax of 9.8 (95% CI, 6.3-13.3) and 13.9 (95% CI, 10.5-17.2), respectively (P = 0.10). In multivariate analysis, global Δ-TLG was positively associated with the number of previous treatments (P = 0.0004) and negatively associated with [68Ga]Ga-ABY-025 PET/CT SUVmax (P = 0.018) but not with HER2 status (P = 0.09). Conclusion: [68Ga]Ga-ABY-025 PET/CT predicted early metabolic response to HER2-targeted therapy in HER2-positive breast cancer. Metabolic response was attenuated in recurrent disease. [68Ga]Ga-ABY-025 PET/CT appears to provide an estimate of the HER2 expression required to induce tumor metabolic remission by targeted therapies and might be useful as an adjunct diagnostic tool.
  •  
8.
  • Alhuseinalkhudhur, Ali, et al. (författare)
  • Kinetic analysis of HER2-binding ABY-025 Affibody molecule using dynamic PET in patients with metastatic breast cancer
  • 2020
  • Ingår i: EJNMMI Research. - : SPRINGEROPEN. - 2191-219X. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High expression of human epidermal growth factor receptor type 2 (HER2) represents an aggressive subtype of breast cancer. Anti-HER2 treatment requires a theragnostic approach wherein sufficiently high receptor expression in biopsy material is mandatory. Heterogeneity and discordance of HER2 expression between primary tumour and metastases, as well as within a lesion, present a complication for the treatment and require multiple biopsies. Molecular imaging using the HER2-targeting Affibody peptide ABY-025 radiolabelled with Ga-68-gallium for PET/CT is currently under investigation as a non-invasive tool for whole-body evaluation of metastatic HER2 expression. Initial studies demonstrated a high correlation between Ga-68-ABY-025 standardized uptake values (SUVs) and histopathology. However, detecting small liver lesions might be compromised by high background uptake. This study aimed to explore the applicability of kinetic modelling and parametric image analysis for absolute quantification of Ga-68-ABY-025 uptake and HER2-receptor expression and how that relates to static SUVs.Methods: Dynamic Ga-68-ABY-025 PET of the upper abdomen was performed 0-45 min post-injection in 16 patients with metastatic breast cancer. Five patients underwent two examinations to test reproducibility. Parametric images of tracer delivery (K-1) and irreversible binding (K-i) were created with an irreversible two-tissue compartment model and Patlak graphical analysis using an image-derived input function from the descending aorta. A volume of interest (VOI)-based analysis was performed to validate parametric images. SUVs were calculated from 2 h and 4 h post-injection static whole-body images and compared to K-i.Results: Characterization of HER2 expression in smaller liver metastases was improved using parametric images. K-i values from parametric images agreed very well with VOI-based gold standard (R-2 > 0.99, p < 0.001). SUVs of metastases at 2 h and 4 h post-injection were highly correlated with K-i values from both the two-tissue compartment model and Patlak method (R-2 = 0.87 and 0.95, both p < 0.001). Ga-68-ABY-025 PET yielded high test-retest reliability (relative repeatability coefficient for Patlak 30% and for the two-tissue compartment model 47%).Conclusion: Ga-68-ABY-025 binding in HER2-positive metastases was well characterized by irreversible two-tissue compartment model wherein K-i highly correlated with SUVs at 2 and 4 h. Dynamic scanning with parametric image formation can be used to evaluate metastatic HER2 expression accurately.
  •  
9.
  •  
10.
  • Almby, Kristina E., et al. (författare)
  • Effects of Gastric Bypass Surgery on the Brain : Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:6, s. 1265-1277
  • Tidskriftsartikel (refereegranskat)abstract
    • While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by F-18-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 310
Typ av publikation
tidskriftsartikel (268)
doktorsavhandling (16)
annan publikation (14)
konferensbidrag (4)
forskningsöversikt (4)
bokkapitel (2)
visa fler...
recension (2)
visa färre...
Typ av innehåll
refereegranskat (199)
övrigt vetenskapligt/konstnärligt (110)
populärvet., debatt m.m. (1)
Författare/redaktör
Lubberink, Mark (297)
Sörensen, Jens (80)
Antoni, Gunnar (58)
Sandström, Mattias (39)
Jonasson, My (37)
Lammertsma, Adriaan ... (37)
visa fler...
Appel, Lieuwe (34)
Sundin, Anders, 1954 ... (28)
Tolmachev, Vladimir (27)
Kero, Tanja (25)
Velikyan, Irina (24)
Lundqvist, Hans (21)
Wall, Anders (21)
Harms, Hendrik J. (20)
Knaapen, Paul (20)
Furmark, Tomas (19)
Lindström, Elin (18)
Ahlström, Håkan, 195 ... (17)
Sundin, Anders (17)
Velikyan, Irina, 196 ... (17)
Larsson, Elna-Marie (16)
Eriksson, Olof (16)
Nordström, Jonny (15)
Estrada, Sergio (14)
Frick, Andreas (13)
Fredrikson, Mats (12)
Eriksson, Barbro (12)
Lindman, Henrik (12)
Engström, Mathias (12)
Granberg, Dan (12)
Eriksson, Jonas (12)
van Rossum, Albert C ... (12)
Nyholm, Dag (11)
Danfors, Torsten (11)
Windhorst, Albert D (11)
Carlsson, Jörgen (10)
Schuit, Robert C (10)
Boellaard, Ronald (10)
Ahlström, Håkan (9)
Feldwisch, Joachim (9)
Långström, Bengt (9)
Åhs, Fredrik (9)
Harms, H J (9)
Johansson, Lars (8)
Kullberg, Joel, 1979 ... (8)
Wahlstedt, Kurt (8)
Heurling, Kerstin (8)
Frick, Andreas, Doce ... (8)
Saraste, Antti (8)
Raijmakers, Pieter G ... (8)
visa färre...
Lärosäte
Uppsala universitet (305)
Karolinska Institutet (37)
Lunds universitet (12)
Göteborgs universitet (10)
Umeå universitet (9)
Mittuniversitetet (7)
visa fler...
Stockholms universitet (5)
Luleå tekniska universitet (3)
Linköpings universitet (3)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (2)
Sveriges Lantbruksuniversitet (2)
visa färre...
Språk
Engelska (308)
Svenska (1)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (237)
Samhällsvetenskap (13)
Teknik (8)
Naturvetenskap (5)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy