SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marcelli N.) "

Sökning: WFRF:(Marcelli N.)

  • Resultat 1-10 av 153
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
3.
  • Adriani, O., et al. (författare)
  • Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment
  • 2013
  • Ingår i: JETP Letters. - 0021-3640 .- 1090-6487. ; 96:10, s. 621-627
  • Tidskriftsartikel (refereegranskat)abstract
    • It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works.
  •  
4.
  • Adriani, O., et al. (författare)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
5.
  • Adriani, O., et al. (författare)
  • The PAMELA Space Mission for Antimatter and Dark Matter Searches in Cosmic Rays
  • 2010
  • Ingår i: SCIENCE WITH THE NEW GENERATION OF HIGH-ENERGY GAMMA-RAY EXPERIMENTS. - : AIP. - 9780735407671 ; , s. 33-42
  • Konferensbidrag (refereegranskat)abstract
    • On the 15(th) of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The instrument allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA is investigating phenomena connected with solar and earth physics. Results of the antiproton and positron data will be presented.
  •  
6.
  • Bazilevskaya, G. A., et al. (författare)
  • Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 493-496
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer was launched into a near-Earth orbit on board the Resurs-DK1 satellite in June 2006; in December 2006, it recorded the last strong solar high-energy particle event of the 23rd solar cycle. A deficit was thereafter observed in solar energetic particle events because of the lengthy solar activity minimum and the weak evolution of the next (24th) solar cycle. As a result, only a few solar events involving protons with energies of more than 100 MeV were recorded between 2010 and 1012. This work presents the preliminary results from measurements of charged particle fluxes in these events, recorded by the Pamela spectrometer.
  •  
7.
  • De Simone, N., et al. (författare)
  • PAMELA : Measurements of matter and antimatter in space
  • 2011
  • Ingår i: Nuovo cimento della societa italiana de fisica. C, Geophysics and space physics. - 1124-1896 .- 1826-9885. ; 34:3, s. 79-87
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (antihelium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA investigates phenomena connected with solar and earth physics. The main results and updated data will be presented.
  •  
8.
  • Mayorov, A. G., et al. (författare)
  • Antiprotons of galactic cosmic radiation in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 602-605
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for antiproton selection against a background of electrons, based on a mathematical model of data classification using variations in interparticle interaction in a calorimeter, and a method for excluding events accompanied by scattering in the inner detectors of a tracking system (which result in errors in the measured trajectory's curvature and charge sign) from analysis are discussed in this paper. Antiproton spectra and antiproton/proton flux ratio at energies of 0.06 to 350 GeV with statistics of events surpassing those in [1] are obtained. The results can be used to create models for the generation and distribution of particles in the Galaxy, and for searching and studying the nature of hypothetical dark matter particles.
  •  
9.
  • Mocchiutti, E., et al. (författare)
  • Precision studies of cosmic rays with the PAMELA satellite experiment
  • 2009
  • Ingår i: 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5. - : IEEE. - 9781424439621 ; , s. 2125-2130
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15th 2006. The combination of a permanent magnet silicon strip spectrometer, and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 200 GeV). A primary scientific goal is to search for dark matter particle annihilations by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment will be reviewed with a particular focus on cosmic ray antiprotons and positrons. The status of PAMELA measurements for other cosmic ray species will also be reviewed.
  •  
10.
  • Mocchiutti, E., et al. (författare)
  • Results from PAMELA
  • 2011
  • Ingår i: NUCL PHYS B-PROC SUP. - : Elsevier BV. ; , s. 243-248
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15(th) 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - several hundred GeV). A primary scientific goal is to search for dark matter particle annihilation by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment are presented with a particular focus on cosmic ray antiprotons and positrons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 153

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy