SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mohammadian Mehrbod) "

Sökning: WFRF:(Mohammadian Mehrbod)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brusaferri, Ludovica, et al. (författare)
  • Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset
  • 2024
  • Ingår i: Brain, Behavior, and Immunity. - 0889-1591 .- 1090-2139. ; 116, s. 259-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 ‘Pre-Pandemic’, 28 ‘Pandemic’) using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 (‘Pre-Pandemic’ cLBP) or between August 2020 and May 2022 (‘Pandemic’ cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = −0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.
  •  
2.
  • Hossain, Iftakher, et al. (författare)
  • Early Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein in Predicting the Outcome of Mild Traumatic Brain Injury
  • 2019
  • Ingår i: Journal of neurotrauma. - : Mary Ann Liebert Inc. - 1557-9042 .- 0897-7151. ; 36:10, s. 1551-1560
  • Tidskriftsartikel (refereegranskat)abstract
    • To correlate the early levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NF-L) with outcome in patients with mild traumatic brain injury (mTBI). 107 patients with mTBI [Glasgow Coma Scale (GCS) ≥13] having the blood samples for GFAP and NF-L available within 24 hrs from arrival were included. Patients with mTBI were divided into computed tomography (CT)-positive and CT-negative groups. Glasgow Outcome Scale extended (GOSE) was used to assess the outcome. Outcomes were defined as complete (GOSE 8) vs. incomplete (GOSE <8), and favorable (GOSE 5-8) vs. unfavorable (GOSE 1-4). GFAP and NF-L concentrations in blood were measured using ultrasensitive single molecule array technology. Patients with incomplete recovery had significantly higher levels of NF-L compared to those with complete recovery (p=0.005). The levels of GFAP and NF-L were significantly higher in patients with unfavorable outcome than in patients with favorable outcome (p=0.002 for GFAP and p <0.001 for NF-L). For predicting favorable outcome, the area under the ROC curve for GFAP and NF-L was 0.755 and 0.826, respectively. In a multivariate logistic regression model, the level of NF-L was still a significant predictor for complete recovery (OR=1.008, 95%CI, 1.000-1.016). Moreover, the level of NF-L was a significant predictor for complete recovery in CT-positive patients (OR=1.009, 95%CI, 1.001-1.016). The early levels of GFAP and NF-L are significantly correlated with the outcome in patients with mTBI. The level of NF-L within 24 hrs from arrival has a significant predictive value in mTBI also in a multivariate model.
  •  
3.
  • Korhonen, Otto, et al. (författare)
  • Outlier analysis for acute blood biomarkers of moderate and severe traumatic brain injury
  • 2024
  • Ingår i: Journal of Neurotrauma. - 0897-7151 .- 1557-9042. ; 41:1-2, s. 91-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI (n = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-Type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-Tau), amyloid b40 (Ab40) and amyloid b42 (Ab42), within 24 h of admission. Similar analyses were conducted for controls (n = 40) with an acute orthopedic injury without any head trauma. The patients with TBI were divided into subgroups of normal versus abnormal (n = 9/76) head computed tomography (CT) and favorable (Glasgow Outcome Scale Extended [GOSE] 5-8) versus unfavorable (GOSE <5) (n = 38/42, 5 missing) outcome. Outliers were sought individually from all subgroups from and the whole TBI patient population. Biomarker levels outside Q1-1.5 interquartile range (IQR) or Q3 + 1.5 IQR were considered as outliers. The medical records of each outlier patient were reviewed in a team meeting to determine possible reasons for outlier values. A total of 29 patients (34%) combined from all subgroups and 12 patients (30%) among the controls showed outlier values for one or more of the eight biomarkers. Nine patients with TBI and five control patients had outlier values in more than one biomarker (up to 4). All outlier values were > Q3 + 1.5 IQR. A logical explanation was found for almost all cases, except the amyloid proteins. Explanations for outlier values included extremely severe injury, especially for GFAP and S100B. In the case of H-FABP and IL-10, the explanation was extracranial injuries (thoracic injuries for H-FABP and multi-Trauma for IL-10), in some cases these also were associated with abnormally high S100B. Timing of sampling and demographic factors such as age and pre-existing neurological conditions (especially for T-Tau), explained some of the abnormally high values especially for Nf-L. Similar explanations also emerged in controls, where the outlier values were caused especially by pre-existing neurological diseases. To utilize blood-based biomarkers in clinical assessment of mo/sTBI, very severe or fatal TBIs, various extracranial injuries, timing of sampling, and demographic factors such as age and pre-existing systemic or neurological conditions must be taken into consideration. Very high levels seem to be often associated with poor prognosis and mortality (GFAP and S100B).
  •  
4.
  • Thomas, Ilias, 1987-, et al. (författare)
  • Integrative Analysis of Circulating Metabolite Profiles and Magnetic Resonance Imaging Metrics in Patients with Traumatic Brain Injury
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent evidence suggests that patients with traumatic brain injuries (TBIs) have a distinct circulating metabolic profile. However, it is unclear if this metabolomic profile corresponds to changes in brain morphology as observed by magnetic resonance imaging (MRI). The aim of this study was to explore how circulating serum metabolites, following TBI, relate to structural MRI (sMRI) findings. Serum samples were collected upon admission to the emergency department from patients suffering from acute TBI and metabolites were measured using mass spectrometry-based metabolomics. Most of these patients sustained a mild TBI. In the same patients, sMRIs were taken and volumetric data were extracted (138 metrics). From a pool of 203 eligible screened patients, 96 met the inclusion criteria for this study. Metabolites were summarized as eight clusters and sMRI data were reduced to 15 independent components (ICs). Partial correlation analysis showed that four metabolite clusters had significant associations with specific ICs, reflecting both the grey and white matter brain injury. Multiple machine learning approaches were then applied in order to investigate if circulating metabolites could distinguish between positive and negative sMRI findings. A logistic regression model was developed, comprised of two metabolic predictors (erythronic acid and myo-inositol), which, together with neurofilament light polypeptide (NF-L), discriminated positive and negative sMRI findings with an area under the curve of the receiver-operating characteristic of 0.85 (specificity = 0.89, sensitivity = 0.65). The results of this study show that metabolomic analysis of blood samples upon admission, either alone or in combination with protein biomarkers, can provide valuable information about the impact of TBI on brain structural changes.
  •  
5.
  • Tuure, Juho, et al. (författare)
  • Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury.
  • 2024
  • Ingår i: Journal of neurotrauma. - 1557-9042. ; 41:3-4, s. 359-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho=-0.18; p<0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p=0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy