SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muhammad Ghulam) "

Sökning: WFRF:(Muhammad Ghulam)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
3.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
4.
  • Abdal, Noman, et al. (författare)
  • Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress : implications for phytoremediation
  • 2023
  • Ingår i: Environmental Geochemistry and Health. - : Springer Science and Business Media LLC. - 0269-4042 .- 1573-2983. ; 45:1, s. 171-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Cadmium (Cd) contamination and soil salinity are the main environmental issues reducing crop productivity. This study aimed to examine the combined effects of salinity (NaCl) and Cd on the physiological and biochemical attributes of quinoa (Chenopodium quinoa Willd.). For this purpose, 30-day-old plants of quinoa genotype “Puno” were transplanted in Hoagland's nutrient solution containing diverse concentrations of Cd: 0, 50, 100, 200 µM Cd, and salinity: 0, 150, and 300 mM NaCl. Results demonstrated that plant growth, stomatal conductance, and pigment contents were significantly lower at all Cd concentrations than the control plants. Quinoa plants exhibited improved growth and tolerance against Cd when grown at a lower level of salinity (150 mM NaCl) combined with Cd. In contrast, the elevated concentration of salinity (300 mM NaCl) combined with Cd reduced shoot and root growth of experimental plants more than 50%. Combined application of salinity and Cd increased Na (25-fold), while lessened the Cd (twofold) and K (1.5-fold) uptake. A blend of high concentrations of Na and Cd caused overproduction of H2O2 (eightfold higher than control) contents and triggered lipid peroxidation. The activities of antioxidant enzymes: ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were 13, 12, 7 and ninefold higher than control to mitigate the oxidative stress. Due to restricted root to shoot translocation, and greater tolerance potential against Cd, the quinoa genotype, Puno, is suitable for phytostabilization of Cd in saline soils.
  •  
5.
  • Ashraf, Waqar Muhammad, et al. (författare)
  • Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
  • 2022
  • Ingår i: Alexandria Engineering Journal. - 1110-0168 .- 2090-2670. ; 61:3, s. 1864-1880
  • Tidskriftsartikel (refereegranskat)abstract
    • The vibrations of bearings holding the high-speed shaft of a steam turbine are critically controlled for the safe and reliable power generation at the power plants. In this paper, two artificial intelligence (AI) process models, i.e., artificial neural network (ANN) and support vector machine (SVM) based relative vibration modeling of a steam turbine shaft bearing of a 660 MW supercritical steam turbine system is presented. After extensive data processing and machine learning based visualization tests performed on the raw operational data, ANN and SVM models are trained, validated and compared by external validation tests. ANN has outperformed SVM in terms of better prediction capability and is, therefore, deployed for simulating the constructed operating scenarios. ANN process model is tested for the complete load range of power plant, i.e., from 353 MW to 662 MW and 4.07% reduction in the relative vibration of the bearing is predicted by the network. Further, various vibration reduction operating strategies are developed and tested on the validated and robust ANN process model. A selected operating strategy which has predicted a promising reduction in the relative vibration of bearing is selected. In order to confirm the effectiveness of the prediction of the ANN process model, the selected operating strategy is implemented on the actual operation of the power plant. The resulting reduction in the relative vibrations of the turbine's bearing, which is less than the alarm limit, are confirmed. This cements the role of ANN process model to be used as an operational excellence tool resulting in vibration reduction of high-speed rotating equipment. (c) 2021 THE AUTHORS. Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
6.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
7.
  • Afroz, Laila, et al. (författare)
  • Nanocomposite Catalyst (1 – x)NiO-xCuO/yGDC for Biogas Fueled Solid Oxide Fuel Cells
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:21, s. 10918-10928
  • Tidskriftsartikel (refereegranskat)abstract
    • The composites of Ni–Cu oxides with gadolinium doped ceria (GDC) are emerging as highly proficient anode catalysts, owing to their remarkable performance for solid oxide fuel cells operated with biogas. In this context, the nanocomposite catalysts (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3) are synthesized using a solid-state reaction route. The cubic and monoclinic structures are observed for NiO and CuO phases, respectively, while CeO2 showed cubic fluorite structure. The scanning electron microscopic images revealed a rise in the particle size with an increase in the copper and GDC concentration. The optical band gap values are calculated in the range 2.82–2.33 eV from UV–visible analysis. The Raman spectra confirmed the presence of vibration modes of CeO2 and NiO. The electrical conductivity of the nanocomposite anodes is increased as the concentration of copper and GDC increased and reached at 9.48 S cm–1 for 0.2NiO-0.8CuO/1.3GDC composition at 650 °C. The electrochemical performance of (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3)-based fuel cells is investigated with biogas fuel at 650 °C. Among all of the as-synthesized anodes, the fuel cell with composition 0.2NiO-0.8CuO/1.3GDC showed the best performance, such as an open circuit voltage of 0.84 V and peak power density of 72 mW cm–2. However, from these findings, it can be inferred that among all other compositions, the 0.2NiO-0.8CuO/1.3GDC anode is a superior combination for the high electrochemical performance of solid oxide fuel cells fueled with biogas.
  •  
8.
  • Alay-e-Abbas, Syed Muhammad, 1983-, et al. (författare)
  • Structure inversion asymmetry enhanced electronic structure and electrical transport in 2D A3SnO (A = Ca, Sr, and Ba) anti-perovskite monolayers
  • 2023
  • Ingår i: Nano Reseach. - : Springer Nature. - 1998-0124 .- 1998-0000. ; 16:1, s. 1779-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • Anti-perovskites A3SnO (A = Ca, Sr, and Ba) are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry, spin-orbit coupling, and band overlap. This provides an exciting playground for modulating their electronic properties in the two-dimensional (2D) limit. Herein, we employ first-principles density functional theory (DFT) calculations by combining dispersion-corrected SCAN + rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural, thermodynamic, dynamical, mechanical, electronic, and thermoelectric properties of bulk and monolayer (one unit cell thick) A3SnO anti-perovskites. Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable. Moreover, Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin-orbit coupling and inversion asymmetry. On the other hand, monolayer Ba3SnO exhibits Dirac cone at the high-symmetry Γ point due to the domination of band overlap. Based on the predicted electronic transport properties, it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts.
  •  
9.
  • Ali, Kiran, et al. (författare)
  • Rapid Identification of Common Secondary Metabolites of Medicinal Herbs Using High-Performance Liquid Chromatography with Evaporative Light Scattering Detector in Extracts
  • 2021
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989 .- 2218-1989. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery and identification of novel natural products of medicinal importance in the herbal medicine industry becomes a challenge. The complexity of this process can be reduced by dereplication strategies. The current study includes a method based on high-performance liquid chromatography (HPLC), using the evaporative light scattering detector (ELSD) to identify the 12 most common secondary metabolites in plant extracts. Twelve compounds including rutin, taxifolin, quercetin, apigenin, kaempferol, betulinic acid, oleanolic acid, betulin, lupeol, stigmasterol, and beta-sitosterol were analyzed simultaneously. The polarity of the compounds varied greatly from highly polar (flavonoids) to non-polar (triterpenes and sterols). This method was also tested for HPLC-DAD and HPLC-ESI-MS/MS analysis. Oleanolic acid and ursolic acid could not be separated in HPLC-ELSD analysis but were differentiated using LC-ESI-MS/MS analysis due to different fragment ions. The regression values (R-2 > 0.996) showed good linearity in the range of 50-1000 mu g/mL for all compounds. The range of LOD and LOQ values were 7.76-38.30 mu g/mL and 23.52-116.06 mu g/mL, respectively. %RSD and % trueness values of inter and intraday studies were mostly <10%. This method was applied on 10 species of medicinal plants. The dereplication strategy has the potential to facilitate and shorten the identification process of common secondary metabolites in complex plant extracts.
  •  
10.
  • Bilal, Muhammad, et al. (författare)
  • DFT insights into surface properties of anti-perovskite 3D topological crystalline insulators : A case study of (001) surfaces of Ca3SnO
  • 2021
  • Ingår i: Physics Letters A. - : Elsevier. - 0375-9601 .- 1873-2429. ; 408
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter density functional theory calculations are used for investigating the structural, energetic and electronic properties of CaSn- and Ca2O-terminated (001) surfaces of anti-perovskite Ca3SnO. Our calculations indicate larger structural changes in case of the CaSn-terminated (001) surface of Ca3SnO, however, both CaSn- and Ca2O-terminated surfaces of Ca3SnO are found to be energetically stable. The electronic properties of (001) surfaces of Ca3SnO are examined by taking spin-orbit coupling into account. Comparison of the simulated results of electronic properties for the two (001) surfaces of Ca3SnO with experimentally reported hole carrier densities observed in p-type polycrystalline samples show good agreement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45
Typ av publikation
tidskriftsartikel (43)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (45)
Författare/redaktör
Musharraf, Syed Ghul ... (12)
Abbas, Ghulam (10)
Alay-e-Abbas, Syed M ... (6)
Ali, Arslan (6)
El-Seedi, Hesham R. (6)
El-Seedi, Hesham (6)
visa fler...
Larsson, J. Andreas (5)
Sajjad, Muhammad (5)
Sahebkar, Amirhossei ... (5)
Koyanagi, Ai (5)
Edvardsson, David (5)
Sheikh, Aziz (5)
Hay, Simon I. (5)
Afarideh, Mohsen (5)
Agrawal, Sutapa (5)
Alahdab, Fares (5)
Badawi, Alaa (5)
Bensenor, Isabela M. (5)
Esteghamati, Alireza (5)
Feigin, Valery L. (5)
Geleijnse, Johanna M ... (5)
Grosso, Giuseppe (5)
Hamidi, Samer (5)
Hassen, Hamid Yimam (5)
Jonas, Jost B. (5)
Kasaeian, Amir (5)
Khader, Yousef Saleh (5)
Khalil, Ibrahim A. (5)
Khang, Young-Ho (5)
Kokubo, Yoshihiro (5)
Lorkowski, Stefan (5)
Lotufo, Paulo A. (5)
Malekzadeh, Reza (5)
Mendoza, Walter (5)
Miller, Ted R. (5)
Mokdad, Ali H. (5)
Naghavi, Mohsen (5)
Pereira, David M. (5)
Qorbani, Mostafa (5)
Roshandel, Gholamrez ... (5)
Sartorius, Benn (5)
Sepanlou, Sadaf G. (5)
Tran, Bach Xuan (5)
Ukwaja, Kingsley Nna ... (5)
Ullah, Irfan (5)
Uthman, Olalekan A. (5)
Vollset, Stein Emil (5)
Vos, Theo (5)
Xu, Gelin (5)
Yonemoto, Naohiro (5)
visa färre...
Lärosäte
Uppsala universitet (14)
Luleå tekniska universitet (14)
Högskolan i Halmstad (6)
Umeå universitet (5)
Lunds universitet (5)
Karolinska Institutet (5)
visa fler...
Högskolan Dalarna (5)
Chalmers tekniska högskola (4)
Stockholms universitet (2)
Mälardalens universitet (2)
Linköpings universitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Södertörns högskola (1)
Högskolan i Borås (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (45)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Medicin och hälsovetenskap (11)
Teknik (5)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy