SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neuenfeldt Stefan) "

Sökning: WFRF:(Neuenfeldt Stefan)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Behrens, Jane W, et al. (författare)
  • Correlations between hemoglobin type and temperature preference of juvenile Atlantic cod Gadus morhua
  • 2012
  • Ingår i: Journal of Experimental Marine Biology and Ecology. - 0022-0981. ; 413, s. 71-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlantic cod (Gadus morhua L.) exhibits polymorphic hemoglobin variants with the HbI locus showing a strong North-South geographic cline in frequency distribution of three main types (1/1, 1/2 and 2/2). This may indicate selective advantages of the different HbI types under various temperature regimes. Despite this only one study has directly examined the temperature preference of the two homozygous types, HbI- 1/1 and HbI-2/2, whereas the preference of the heterozygote (HbI-1/2) has never previously been addressed. By exposing fish to a 4–19 °C temperature gradient in an annular preference chamber we recorded the preferred temperature of wild juvenile G. morhua of all three main Hbl types originating from an area where they co-exist. HbI-2/2 G. morhua preferred significantly cooler water (8.9±0.2 °C) compared to the HbI-1/1 group (11±0.6 °C), this difference, however, not being as distinct as previously reported. There was pronounced inter-individual variation in the temperature preference of the HbI-1/2 G. morhua ranging between 6.7 and 13.8 °C, and their overall preference (10.5±0.9 °C) did not differ significantly from either of the homozygous HbI types. Notably, the mean range of utilized temperature (temperature span between 1st and 3rd quartile) was very similar between all 3 Hbl types with 3.2–3.5 °C. Considering the complexity of a trait like temperature preference, there are clearly many other factors besides HbI type that influence the thermal biology of cod, and therefore we also investigated possible associations between genotype and temperature preference for 12 variable candidate gene single nucleotide polymorphisms (SNPs) a priori expected to be related to growth and reproduction. There were, however, no significant correlations between temperature preference and any of the candidate gene SNPs indicating that none of these polymorphisms strongly associates with thermal behavior. Considering however the high-throughput genotyping methods becoming increasingly accessible there is great potential for association studies involving many more genetic markers to identify additional genetic polymorphisms that are important for temperature preference in G. morhua. In conclusion, we support the notion of a ‘warm’ (HbI-2/2) and a ‘cold’ (HbI-1/1) Hb type, although we suggest the difference to be more subtle than previously reported. Furthermore HbI-1/2 G. morhua shows rather inconsistent thermoregulatory behavior. To obtain a more definitive picture of the extent to which thermal niches are realized under natural conditions field observations in areas where the 3 HbI types co-exist should be performed.
  •  
3.
  • Bergström, Lena, et al. (författare)
  • Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB)
  • 2015
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea(WGIAB) was established in 2007 as a forum for developing and combining ecosystembasedmanagement efforts for the Baltic Sea. The group intends to serve as a scientificcounterpart and support for the ICES Baltic Fisheries Assessment Working Group(WGBFAS) as well as for efforts and projects related to Integrated Ecosystem Assessments(IEA) within ICES and HELCOM. The group works in cooperation with similargroups within the ACOM/SCICOM Steering Group on Integrated Ecosystem Assessments(SSGIEA).The 2015 WGIAB meeting was held in Cádiz, Spain, from 9–13 March, back-to-backwith the meeting of its counterpart in the Working Group on Ecosystem Assessmentof Western European Shelf Seas (WGEAWESS). The meetings had joint sessions as wellas WG specific work, and some participants effectively participated in both meetings.The WGIAB meeting was attended by 27 participants from nine countries. The meetingwas chaired by Christian Möllmann, Germany, Laura Uusitalo, Finland and Lena Bergström,Sweden.This was the last year of the ongoing three-year Terms of Reference (ToR) for WGIAB.The main working activities in 2015 were to i) conduct studies on Baltic Sea ecosystemfunctioning with the goal to publish case studies from different parts of the Baltic Seain peer-reviewed journals, ii) work on the demonstration exercise to develop ecosystem-based assessment and advice for Baltic fish stocks focusing on cod (DEMO) withmultiple approaches, iii) plan further how to integrate the social and economic aspectsmore tightly in the WGIAB work, and iv) discuss the future focus and format of theWGIAB work.The Baltic ecosystem functioning activity focused on identifying and exploring keytrends and linkages in the Baltic Sea foodweb. This was pursued by presentation andfurther discussion of ongoing intersessional work on foodweb modelling and integratedanalyses, and by exercises to develop conceptual models Baltic Sea foodwebsand the links to ecosystem function. Long-term monitoring datasets on the abiotic andbiotic parts of the Baltic Sea Proper ecosystem were updated for use in the continuedwork to develop environmental indicators for fisheries and marine management.The focus of the DEMO 3 (DEMOnstration exercise for Integrated Ecosystem Assessmentand Advice of Baltic Sea cod) was on finding a way to use the results from theDEMO1 and DEMO2 workshops in short and midterm projections/scenarios of Balticcod dynamics based on different types of modelling, as well as designing methodologyand modelling data for practical implementation of Integrated Advice for Baltic cod.The WGIAB was positively inclined towards including social and economic aspectsinto the integrated assessment. Openings to this path were provided by presentationon ongoing project work, and discussing their linkages to ecological aspects. It wasseen as crucial that experts on social and economic analysis should be included andtake an active part in the future work of the group.The group concluded that its upcoming work should focus more closely on functionaldiversity, which was identified as a recurring issue in the Baltic Sea. This approach wasalso identified as a useful connection point between scientific and management aspectsin order for the group to continue serving as a forum for developing ecosystem-basedmanagement efforts in the Baltic Sea. A focus on functional diversity was also seen as2 | ICES WGIAB REPORT 2015a potentially feasible way of bringing together management aspects for different sectors,by linking to ecosystem services concepts.The group proposed Saskia Otto, Germany and Martin Lindegren, Denmark as newincoming Chairs, together with Lena Bergström, Sweden and Laura Uusitalo, Finland.Having four Chairs is justified due to the wide scope of the group's work, as well asthe increased work load due to the planned new foci.
  •  
4.
  • Gårdmark, Anna, et al. (författare)
  • Biological ensemble modeling to evaluate potential futures of living marine resources
  • 2013
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 23:4, s. 742-754
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the biological ensemble modeling approach,'' using the Eastern Baltic cod (Gadus morhua callarias) as an example. The core of the approach is to expose an ensemble of models with different ecological assumptions to climate forcing, using multiple realizations of each climate scenario. We simulated the long-term response of cod to future fishing and climate change in seven ecological models ranging from single-species to food web models. These models were analyzed using the biological ensemble modeling approach'' by which we (1) identified a key ecological mechanism explaining the differences in simulated cod responses between models, (2) disentangled the uncertainty caused by differences in ecological model assumptions from the statistical uncertainty of future climate, and (3) identified results common for the whole model ensemble. Species interactions greatly influenced the simulated response of cod to fishing and climate, as well as the degree to which the statistical uncertainty of climate trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator-prey feedbacks. Yet in all models, intense fishing prevented recovery, and climate change further decreased the cod population. Our study demonstrates how the biological ensemble modeling approach makes it possible to evaluate the relative importance of different sources of uncertainty in future species responses, as well as to seek scientific conclusions and sustainable management solutions robust to uncertainty of food web processes in the face of climate change.
  •  
5.
  • Hinrichsen, Hans-Harald, et al. (författare)
  • Report of the Workshop on DEveloping Integrated AdviCE for Baltic Sea ecosystem-based fisheries management (WKDEICE) : 18-21 April 2016 Helsinki, Finland
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The first ICES Workshop on DEveloping Integrated AdviCE for Baltic Sea ecosystem-based fisheries management (WKDEICE) had the aim to start identifying and devel-oping ways to include environmental and economic considerations into ICES advice on Baltic Sea fish stocks. The WKDEICE meeting was held in Helsinki, Finland, on18–21 April 2016, with 12 participants from three countries and was chaired by Chris-tian Möllmann (Germany), Rudi Voss (Germany), and Maciej T. Tomczak (Sweden). Focusing on Eastern Baltic cod (subdivisions 25-32), WKDEICE addressed five main topics:1)developing a strategy for integrating environmental and economic infor-mation in fish stock advice;2)conducting an integrated environmental assessment;3)conducting a socio-economic assessment;4)conducting short-term projections informed by environmental and economic conditions; and5)communicating the approach and the results.Eastern Baltic cod has been selected as a case study. The exercise will likely be ex-tended to the baltic clupeid stocks of herring and sprat.A central point of the meeting was to discuss and design a concept of operationalized Integrated Ecosystem Assessment (IEA) including short-term predictions, to be used in advice on the main Baltic Sea fish stocks. The group developed an operational strategy, and started to quantify potentially useful environmental indicators, focusing on hydrographic conditions influencing cod recruitment. Economic short-term fore-casts were established to include the human dimension, and to provide additional quantitative information on fishing options. The suggested integrated advice frame-work will be further developed using simulation modelling during a next meeting in 2017. This meeting will be coordinated with the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB) and the Baltic Fisheries Assess-ment Working Group (WGBFAS) to test concepts, apply Management Strategy Eval-uation (MSE) models, and have direct feedback for relevant ICES bodies. 
  •  
6.
  •  
7.
  • Kininmonth, Stuart, et al. (författare)
  • Is Diversity the Missing Link in Coastal Fisheries Management?
  • 2022
  • Ingår i: Diversity. - : MDPI AG. - 1424-2818. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Fisheries management has historically focused on the population elasticity of target fish based primarily on demographic modeling, with the key assumptions of stability in environmental conditions and static trophic relationships. The predictive capacity of this fisheries framework is poor, especially in closed systems where the benthic diversity and boundary effects are important and the stock levels are low. Here, we present a probabilistic model that couples key fish populations with a complex suite of trophic, environmental, and geomorphological factors. Using 41 years of observations we model the changes in eastern Baltic cod (Gadus morhua), herring (Clupea harengus), and Baltic sprat (Sprattus sprattus balticus) for the Baltic Sea within a Bayesian network. The model predictions are spatially explicit and show the changes of the central Baltic Sea from cod- to sprat-dominated ecology over the 41 years. This also highlights how the years 2004 to 2014 deviate in terms of the typical cod–environment relationship, with environmental factors such as salinity being less influential on cod population abundance than in previous periods. The role of macrozoobenthos abundance, biotopic rugosity, and flatfish biomass showed an increased influence in predicting cod biomass in the last decade of the study. Fisheries management that is able to accommodate shifting ecological and environmental conditions relevant to biotopic information will be more effective and realistic. Non-stationary modelling for all of the homogeneous biotope regions, while acknowledging that each has a specific ecology relevant to understanding the fish population dynamics, is essential for fisheries science and sustainable management of fish stocks.
  •  
8.
  • Korpinen, Samuli, et al. (författare)
  • Food web assessments in the Baltic Sea : Models bridging the gap between indicators and policy needs
  • 2022
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 51:7, s. 1687-1697
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union’s Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments. 
  •  
9.
  • MacKenzie, Brian R., et al. (författare)
  • Impact of Climate Change on Fish Population Dynamics in the Baltic Sea : A Dynamical Downscaling Investigation
  • 2012
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 41:6, s. 626-636
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.
  •  
10.
  • Moellmann, Christian, et al. (författare)
  • Implementing ecosystem-based fisheries management : from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks
  • 2014
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 71:5, s. 1187-1197
  • Tidskriftsartikel (refereegranskat)abstract
    • Theory behind ecosystem-based management (EBM) and ecosystem-based fisheries management (EBFM) is now well developed. However, the implementation of EBFM exemplified by fisheries management in Europe is still largely based on single-species assessments and ignores the wider ecosystem context and impact. The reason for the lack or slow implementation of EBM and specifically EBFM is a lack of a coherent strategy. Such a strategy is offered by recently developed integrated ecosystem assessments (IEAs), a formal synthesis tool to quantitatively analyse information on relevant natural and socio-economic factors, in relation to specified management objectives. Here, we focus on implementing the IEA approach for Baltic Sea fish stocks. We combine both tactical and strategic management aspects into a single strategy that supports the present Baltic Sea fish stock advice, conducted by the International Council for the Exploration of the Sea (ICES). We first review the state of the art in the development of IEA within the current management framework. We then outline and discuss an approach that integrates fish stock advice and IEAs for the Baltic Sea. We intentionally focus on the central Baltic Sea and its three major fish stocks cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus), but emphasize that our approach may be applied to other parts and stocks of the Baltic, as well as other ocean areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (9)
rapport (7)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Neuenfeldt, Stefan (16)
Casini, Michele (6)
Tomczak, Maciej T. (5)
Blenckner, Thorsten (5)
Holmgren, Noél (4)
Eero, Margit (4)
visa fler...
Luzenczyk, Anna (4)
Norrström, Niclas (4)
Ustups, Didzis (4)
Lindegren, Martin (4)
Kaljuste, Olavi (3)
Lövgren, Johan (3)
Gårdmark, Anna (3)
Dierking, Jan (3)
Horbowy, Jan (3)
Krumme, Uwe (3)
Storr-Paulsen, Marie (3)
Niiranen, Susa (3)
Karpushevskiy, Igor (3)
Kornilovs, Georgs (3)
Plikshs, Maris (3)
Raid, Tiit (3)
Orio, Alessandro (3)
Müller-Karulis, Bärb ... (3)
Tomczak, Maciej (3)
Pekcan-Hekim, Zeynep (3)
Bergström, Lena (2)
Bergenius, Mikaela (2)
Hjelm, Joakim (2)
Bartolino, Valerio (2)
Pönni, Jukka (2)
Raitaniemi, Jari (2)
Gasyukov, Pavel (2)
Jonusas, Stanislovas (2)
Large, Scott (2)
Nielsen, Anders (2)
Oeberst, Rainer (2)
Möllmann, Christian (2)
Arula, Timo (2)
Kininmonth, Stuart (2)
Gröhsler, Tomas (2)
Boje, Jesper (2)
Degel, Henrik (2)
Grygiel, Wlodzimierz (2)
Statkus, Romas (2)
Stoetera, Sven (2)
Uusitalo, Laura (2)
Bonsdorff, Erik (2)
Hamrén, Henrik (2)
Moellmann, Christian (2)
visa färre...
Lärosäte
Stockholms universitet (8)
Högskolan i Skövde (5)
Sveriges Lantbruksuniversitet (4)
Lunds universitet (3)
Göteborgs universitet (1)
Karlstads universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Lantbruksvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy