SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pose David) "

Sökning: WFRF:(Pose David)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Capovilla, Giovanna, et al. (författare)
  • Control of flowering by ambient temperature
  • 2015
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 66:1, s. 59-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of flowering is a crucial decision in the life cycle of plants since favourable conditions are needed to maximize reproductive success and, hence, the survival of the species. It is therefore not surprising that plants constantly monitor endogenous and environmental signals, such as day length (photoperiod) and temperature, to adjust the timing of the floral transition. Temperature in particular has been shown to have a tremendous effect on the timing of flowering: the effect of prolonged periods of cold, called the vernalization response, has been extensively studied and the underlying epigenetic mechanisms are reasonably well understood in Arabidopsis thaliana. In contrast, the effect of moderate changes in ambient growth temperature on the progression of flowering, the thermosensory pathway, is only starting to be understood on the molecular level. Several genes and molecular mechanisms underlying the thermosensory pathway have already been identified and characterized in detail. At a time when global temperature is rising due to climate change, this knowledge will be pivotal to ensure crop production in the future.
  •  
2.
  • Engelhorn, Julia, et al. (författare)
  • Dynamics of H3K4me3 Chromatin Marks Prevails over H3K27me3 for Gene Regulation during Flower Morphogenesis in Arabidopsis thaliana
  • 2017
  • Ingår i: Epigenomes. - : MDPI. - 2075-4655. ; 1:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant life-long organogenesis involves sequential, time and tissue specific expression of developmental genes. This requires activities of Polycomb Group (PcG) and trithorax Group complexes (trxG), respectively responsible for repressive Histone 3 trimethylation at lysine 27 (H3K27me3) and activation-related Histone 3 trimethylation at lysine 4 (H3K4me3). However, the genome-wide dynamics in histone modifications that occur during developmental processes have remained elusive. Here, we report the distributions of H3K27me3 and H3K4me3 along with expression changes, in a developmental series including Arabidopsis thaliana leaf and three stages of flower development. We found that chromatin mark levels are highly dynamic over the time series on nearly half of all Arabidopsis genes. Moreover, during early flower morphogenesis, changes in H3K4me3 prevail over changes in H3K27me3 and quantitatively correlate with expression changes, while H3K27me3 changes occur later. Notably, we found that H3K4me3 increase during the early activation of PcG target genes while H3K27me3 level remain relatively constant at the locus. Our results reveal that H3K4me3 predicts changes in gene expression better than H3K27me3, unveil unexpected chromatin mechanisms at gene activation and underline the relevance of tissue-specific temporal epigenomics.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Lutz, Ulrich, et al. (författare)
  • Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Sayou, Camille, et al. (författare)
  • A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy