SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svedhem Sofia 1970) "

Sökning: WFRF:(Svedhem Sofia 1970)

  • Resultat 1-10 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fang, Zhao, 1986, et al. (författare)
  • TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches
  • 2016
  • Ingår i: RSC Advances. - 2046-2069. ; 6:94, s. 91102-91110
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for different levels of model systems for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems. Descriptors for nanoparticles based on their interactions in molecular model systems may become useful to predict toxicological responses of the nanoparticles in cells. Towards this end, we report on nanoparticle-induced formation of holes in supported model membranes. Specifically, TiO2 nanoparticle – lipid membrane interactions were studied under low ionic strength, basic conditions (pH 8), using different membrane compositions and several surface-sensitive analytical techniques. It was found that for mixed POPC/POPG (PG fractions ≥ 35%) membranes on silica supports, under conditions where electrostatic repulsion was expected, the addition of TiO2 nanoparticles resulted in transient interaction curves, consistent with the removal of part of the lipid membrane. The formation of holes was inferred from quartz crystal microbalance with dissipation (QCM-D) monitoring, as well as from optical measurements by reflectometry, and also verified by atomic force microscopy (AFM) imaging. The interaction between the TiO2 nanoparticles and the PG-containing membranes was dependent on the presence of Ca2+ ions. A mechanism is suggested where TiO2 nanoparticles act as scavengers of Ca2+ ions associated with the supported membrane, leading to weakening of the interaction between the membrane and the support and subsequent removal of lipid mass as TiO2 nanoparticles spontaneously leave the surface. This mechanism is consistent with the observed formation of holes in the supported lipid membranes.
  •  
2.
  • Zhao, Fang, et al. (författare)
  • TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:94, s. 91102-91110
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for different levels of model systems for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems. Descriptors for nanoparticles based on their interactions in molecular model systems may become useful to predict toxicological responses of the nanoparticles in cells. Towards this end, we report on nanoparticle-induced formation of holes in supported model membranes. Specifically, TiO2 nanoparticle – lipid membrane interactions were studied under low ionic strength, basic conditions (pH 8), using different membrane compositions and several surface-sensitive analytical techniques. It was found that for mixed POPC/POPG (PG fractions ≥ 35%) membranes on silica supports, under conditions where electrostatic repulsion was expected, the addition of TiO2 nanoparticles resulted in transient interaction curves, consistent with the removal of part of the lipid membrane. The formation of holes was inferred from quartz crystal microbalance with dissipation (QCM-D) monitoring, as well as from optical measurements by reflectometry, and also verified by atomic force microscopy (AFM) imaging. The interaction between the TiO2 nanoparticles and the PG-containing membranes was dependent on the presence of Ca2+ ions. A mechanism is suggested where TiO2 nanoparticles act as scavengers of Ca2+ ions associated with the supported membrane, leading to weakening of the interaction between the membrane and the support and subsequent removal of lipid mass as TiO2 nanoparticles spontaneously leave the surface. This mechanism is consistent with the observed formation of holes in the supported lipid membranes.
  •  
3.
  • Aggarwal, N., et al. (författare)
  • Effect of Molecular Composition of Heparin and Cellulose Sulfate on Multilayer Formation and Cell Response
  • 2013
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 29:45, s. 13853-13864
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, the layer-by-layer method was applied to assemble films from chitosan paired with either heparin or a semisynthetic cellulose sulfate (CS) that possessed a higher sulfation degree than heparin. Ion pairing was exploited during multilayer formation at pH 4, while hydrogen bonding is likely to occur at pH 9. Effects of polyanions and pH value during layer formation on multilayers properties were studied by surface plasmon resonance ("dry layer mass"), quartz crystal microbalance with dissipation monitoring ("wet layer mass"), water contact angle, and zeta potential measurements. Bioactivity of multilayers was studied regarding fibronectin adsorption and adhesion/proliferation of C2C12 myoblast cells. Layer growth and dry mass were higher for both polyanions at pH 4 when ion pairing occurred, while it decreased significantly with heparin at pH 9. By contrast, CS as polyanion resulted also in high layer growth and mass at pH 9, indicating a much stronger effect of hydrogen bonding between chitosan and CS. Water contact angle and zeta potential measurements indicated a more separated structure of multilayers from chitosan and heparin at pH 4, while CS led to a more fuzzy intermingled structure at both pH values. Cell behavior was highly dependent on pH during multilayer formation with heparin as polyanion and was closely related to fibronectin adsorption. By contrast, CS and chitosan did not show such dependency on pH value, where adhesion and growth of cells was high. Results of this study show that CS is an attractive candidate for multilayer formation that does not depend so strongly on pH during multilayer formation. In addition, such multilayer system also represents a good substrate for cell interactions despite the rather soft structure. As previous studies have shown specific interaction of CS with growth factors, multilayers from chitosan and CS may be of great interest for different biomedical applications.
  •  
4.
  • Aggarwal, N., et al. (författare)
  • Study on multilayer structures prepared from heparin and semi-synthetic cellulose sulfates as polyanions and their influence on cellular response
  • 2014
  • Ingår i: Colloids and Surfaces B: Biointerfaces. - : Elsevier BV. - 0927-7765 .- 1873-4367. ; 116, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Multilayer coatings of polycationic chitosan paired with polyanionic semi-synthetic cellulose sulfates or heparin were prepared by the layer-by-layer method. Two different cellulose sulfates (CS) with high (CS2.6) and intermediate (CS1.6) sulfation degree were prepared by sulfation of cellulose. Multilayers were fabricated at pH 4 and the resulting films were characterized by several methods. The multilayer 'optical' mass, measured by surface plasmon resonance, showed little differences in the total mass adsorbed irrespective of which polyanion was used. In contrast, 'acoustic' mass, calculated from quartz crystal micro balance with dissipation monitoring, showed the lowest mass and dissipation values for CS2.6 (highest sulfation degree) multilayers indicating formation of stiffer layers compared to heparin and CS1.6 layers which led to higher mass and dissipation values. Water contact angle and zeta potential measurements indicated formation of more distinct layers with using heparin as polyanion, while use of CS1.6 and CS2.6 resulted into more fuzzy intermingled multilayers. CS1.6 multilayers significantly supported adhesion and growth of C2C12 cells where as only few cells attached and started to spread initially on CS2.6 layers but favoured long term cell growth. Contrastingly cells adhered and grew poorly on to the layers of heparin. This present study shows that cellulose sulfates are attractive candidates for multilayer formation as potential substratum for controlled cell adhesion. Since a peculiar interaction of cellulose sulfates with growth factors was found during previous studies, immobilization of cellulose sulfate in multilayer systems might be of great interest for tissue engineering applications.
  •  
5.
  •  
6.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Immobilization of chondroitin sulfate to lipid membranes and its interactions with ECM proteins
  • 2013
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 390:1, s. 528-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosaminoglycans (GAGs) in the extracellular matrix (ECM) have multiple functions in tissues including providing support, mediating cell division and differentiation, and taking part in important interactions with proteins, e.g. growth factors. Studying GAG related interactions is inherently difficult and requires suit- able interaction platforms. We show two strategies to covalently couple the GAG chondroitin sulfate (CS) to supported lipid bilayers (SLBs), either by (a) activating carboxy-functionalized phospholipids in the lipid bilayer, followed by the addition of hydrazide-functionalized CS, or by (b) activating naturally occurring carboxyl groups on CS prior to addition to an amino-functionalized SLB. Bilayer formation and subsequent immobilization was followed in real-time using the Quartz Crystal Microbalance with Dissipation monitor- ing, a technique that provides unique information when studying highly hydrated molecular films. The two strategies yielded thin CS films (in the nanometer range) with similar viscoelastic properties. Fluidity of the lipid bilayer was retained when CS was coupled. The application of the CS interaction platform was exemplified for type I collagen and the bone inducing growth factor bone morphogenetic protein-2 (BMP-2). The addition of collagen to immoblized CS resulted in soft layers whereas layers formed by addition of BMP-2 were denser, independent on the immobilization strategy used.
  •  
7.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Mucin-like region of herpes simplex virus type 1 attachment protein gC modulates the virus-glycosaminoglycan interaction.
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:35, s. 21473-21485
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycoprotein C (gC) mediates the attachment of herpes simplex virus type 1 (HSV-1) to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying an HSV-1 mutant lacking the mucin- like domain in gC and the corresponding purified mutant protein (gCΔmuc), in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared to native HSV-1, i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells, and reduced release of viral particles from the surface of infected cells. Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared to native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.
  •  
8.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 9:9, s. 8158-8166
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular interactions involving glycosaminoglycans (GAGs) are important for biological processes in the extracellular matrix (ECM) and at cell surfaces, and also in biotechnological applications. Enzymes in the ECM constantly modulate the molecular structure and the amount of GAGs in our tissues. Specifically, the changeable sulfation patterns of many GAGs are expected to be important in interactions with proteins. Biotinylation is a convenient method for immobilizing molecules to surfaces. When studying interactions at the molecular, cell and tissue level, the native properties of the immobilized molecule, i.e. its biofunctionality, need to be retained upon immobilization. Here, the GAGs hyaluronan (HA) and chondroitin sulfate (CS), and synthetically sulfated derivatives of the two, were immobilized using biotin-streptavidin binding. The degree of biotinylation and the placement of biotin groups (end-on/side-on) were varied. The introduction of biotin groups could have unwanted effects on the studied molecule, but this aspect that is not always straightforward to evaluate. Hyaluronidase, an enzyme that degrades HA and CS in the ECM, was investigated as a probe to evaluate the biofunctionality of the immobilized GAGs, using both quartz crystal microbalance and high-performance liquid chromatography. Our results showed that end-on biotinylated HA was efficiently degraded by hyaluronidase, whereas already a low degree of side-on biotinylation destroyed the degrading ability of the enzyme. Synthetically introduced sulfate groups also had this effect. Hence hyaluronidase degradation is a cheap and easy way to investigate how molecular function is influenced by the introduced functional groups. Binding experiments with the proteoglycan aggrecan emphasized the influence of protein size and surface orientation of the GAGs for in-depth studies of GAG behavior.
  •  
9.
  • Aneheim, Emma, 1982, et al. (författare)
  • Synthesis and Evaluation of Astatinated N-[2-(Maleimido)ethyl]-3-(trimethylstannyl)benzamide Immunoconjugates
  • 2016
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1520-4812 .- 1043-1802. ; 27:3, s. 688-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 μm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 64
Typ av publikation
tidskriftsartikel (58)
konferensbidrag (5)
bokkapitel (1)
Typ av innehåll
refereegranskat (60)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Svedhem, Sofia, 1970 (64)
Kasemo, Bengt Herber ... (28)
Frost, Rickard, 1979 (14)
Kunze, Angelika, 197 ... (13)
Altgärde, Noomi, 198 ... (9)
Nilebäck, Erik, 1984 (7)
visa fler...
Jing, Yujia, 1985 (5)
Aggarwal., N. (3)
Groth, T. (3)
Petronis, Sarunas, 1 ... (3)
Höök, Fredrik, 1966 (3)
Langhammer, Christop ... (3)
Möller, Stephanie (3)
Schnabelrauch, Matth ... (3)
Persson, Mikael, 195 ... (3)
Zäch, Michael, 1973 (3)
Dobsicek Trefna, Han ... (3)
Gold, Julie, 1963 (3)
Edvardsson, Malin, 1 ... (3)
Sutherland, D S (3)
Briand, Elisabeth, 1 ... (3)
Sundh, M. (3)
Tymchenko, Nina, 197 ... (3)
Ohlsson, Gabriel, 19 ... (3)
Abbas, Zareen, 1962 (2)
Perez-Holmberg, Jenn ... (2)
Hassellöv, Martin, 1 ... (2)
Zhang, K. (2)
Fischer, S. (2)
Gunnarsson, Anders, ... (2)
Wayment-Steele, H.K. (2)
Nordén, Bengt, 1945 (2)
Andersson, Martin, 1 ... (2)
Becher, Jana (2)
De Battice, Laura, 1 ... (2)
Richter, Ralf (2)
Deinum, J (2)
Engbersen, J. F. J. (2)
Åkerman, Björn, 1957 (2)
Humblot, V. (2)
Pradier, C. M. (2)
Wang, Guoliang, 1965 (2)
Claesson, Maria, 198 ... (2)
Rodahl, Michael, 196 ... (2)
Fang, Zhao, 1986 (2)
Sun, Lu, 1982 (2)
Jönsson, Peter, 1981 (2)
Coue, G. (2)
Rydberg, Hanna, 1982 (2)
Satriano, Cristina (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (63)
Göteborgs universitet (8)
Linköpings universitet (3)
Lunds universitet (2)
RISE (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Högskolan i Skövde (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (64)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (48)
Teknik (23)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy