SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(el Jundi Basil) "

Sökning: WFRF:(el Jundi Basil)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beetz, M. Jerome, et al. (författare)
  • Flight-induced compass representation in the monarch butterfly heading network
  • 2022
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 32:2, s. 5-349
  • Tidskriftsartikel (refereegranskat)abstract
    • For navigation, animals use a robust internal compass. Compass navigation is crucial for long-distance migrating animals like monarch butterflies, which use the sun to navigate over 4,000 km to their overwintering sites every fall. Sun-compass neurons of the central complex have only been recorded in immobile butterflies, and experimental evidence for encoding the animal's heading in these neurons is still missing. Although the activity of central-complex neurons exhibits a locomotor-dependent modulation in many insects, the function of such modulations remains unexplored. Here, we developed tetrode recordings from tethered flying monarch butterflies to reveal how flight modulates heading representation. We found that, during flight, heading-direction neurons change their tuning, transforming the central-complex network to function as a global compass. This compass is characterized by the dominance of processing steering feedback and allows for robust heading representation even under unreliable visual scenarios, an ideal strategy for maintaining a migratory heading over enormous distances.
  •  
2.
  • Beetz, M Jerome, et al. (författare)
  • Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria
  • 2015
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 523:11, s. 1589-1607
  • Tidskriftsartikel (refereegranskat)abstract
    • Migrating desert locusts, Schistocerca gregaria, are able to use the skylight polarization pattern for navigation. They detect polarized light with a specialized dorsal rim area in their compound eye. After multistage processing, polarization signals are transferred to the central complex, a midline-spanning brain area involved in locomotor control. Polarization-sensitive tangential neurons (TB-neurons) of the protocerebral bridge, a part of the central complex, give rise to a topographic arrangement of preferred polarization angles in the bridge, suggesting that the central complex acts as an internal sky compass. TB-neurons connect the protocerebral bridge with two adjacent brain areas, the posterior optic tubercles. To analyze the polarotopic organization of the central complex further, we investigated the number and morphologies of TB-neurons and the presence and colocalization of three neuroactive substances in these neurons. Triple immunostaining with antisera against Diploptera punctata allatostatin (Dip-AST), Manduca sexta allatotropin (Mas-AT), and serotonin (5HT) raised in the same host species revealed three spatially distinct TB-neuron clusters, each consisting of 10 neurons per hemisphere: cluster 1 and 3 showed Dip-AST/5HT immunostaining, whereas cluster 2 showed Dip-AST/Mas-AT immunostaining. Five subtypes of TB-neuron could be distinguished based on ramification patterns. Corresponding to ramification domains in the protocerebral bridge, the neurons invaded distinct but overlapping layers within the posterior optic tubercle. Similarly, neurons interconnecting the tubercles of the two hemispheres also targeted distinct layers of these neuropils. From these data we propose a neuronal circuit that may be suited to stabilize the internal sky compass in the central complex of the locust
  •  
3.
  • Dacke, Marie, et al. (författare)
  • A dung beetle that path integrates without the use of landmarks
  • 2020
  • Ingår i: Animal Cognition. - : Springer Science and Business Media LLC. - 1435-9448 .- 1435-9456. ; 23, s. 1161-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • Unusual amongst dung beetles,Scarabaeus galenusdigs a burrow that it provisions by making repeated trips to a nearby dung pile. Even more remarkable is that these beetles return home moving backwards, with a pellet of dung between their hind legs. Here, we explore the strategy thatS. galenususes to find its way home. We find that, like many other insects, they use path integration to calculate the direction and distance to their home. If they fail to locate their burrow, the beetles initiate a distinct looping search behaviour that starts with a characteristic sharp turn, we have called a 'turning point'. When homing beetles are passively displaced or transferred to an unfamiliar environment, they initiate a search at a point very close to the location of their fictive burrow-that is, a spot at the same relative distance and direction from the pick-up point as the original burrow. Unlike other insects,S. galenusdo not appear to supplement estimates of the burrow location with landmark information. Thus,S. galenusrepresents a rare case of a consistently backward-homing animal that does not use landmarks to augment its path integration strategy.
  •  
4.
  • Dacke, Marie, et al. (författare)
  • How Dung Beetles Steer Straight
  • 2021
  • Ingår i: Annual Review of Entomology. - : Annual Reviews. - 0066-4170 .- 1545-4487. ; 66, s. 243-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.
  •  
5.
  • Dacke, Marie, et al. (författare)
  • Multimodal cue integration in the dung beetle compass
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:28, s. 14248-14253
  • Tidskriftsartikel (refereegranskat)abstract
    • South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.
  •  
6.
  • Dacke, Marie, et al. (författare)
  • The Dung Beetle Compass
  • 2018
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 28:17, s. 993-997
  • Forskningsöversikt (refereegranskat)abstract
    • What do a burly rower, a backstroke swimmer and a hard-working South African dung beetle all have in common? The answer is: they all benefit from moving along a straight path, and do so moving backwards. This, however, is where the similarity ends. While the rower has solved this navigational challenge by handing the task of steering to the coxswain, who faces the direction of travel, and the swimmer is guided down her lane by colourful ropes, the beetle puts its faith in the sky. From here, it utilises a larger repertoire of celestial compass cues than is known to be used by any other animal studied to date. A robust internal compass, designed to interpret directional information, has evolved under the selective pressure of shifting today's lunch efficiently out of reach of competitors, also drawn to the common buffet. While this is a goal that beetles might share with the hungry athletes, they reach it with drastically different brain powers; the brain of the beetle is several times smaller than a match head, containing fewer than a million neurons. In this Primer, Marie Dacke and Basil el Jundi examine the behavioural and neuronal mechanisms of the dung beetle's celestial compass underlying straight-line orientation.
  •  
7.
  • Dacke, Marie, et al. (författare)
  • The role of the sun in the celestial compass of dung beetles.
  • 2014
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 369:1636
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.
  •  
8.
  • Dreyer, David, et al. (författare)
  • Evidence for a southward autumn migration of nocturnal noctuid moths in central Europe
  • 2018
  • Ingår i: The Journal of experimental biology. - : The Company of Biologists. - 1477-9145 .- 0022-0949. ; 221
  • Tidskriftsartikel (refereegranskat)abstract
    • Insect migrations are spectacular natural events and resemble a remarkable relocation of biomass between two locations in space. Unlike the well-known migrations of daytime flying butterflies, such as the painted lady (Vanessa cardui) or the monarch butterfly (Danaus plexippus), much less widely known are the migrations of nocturnal moths. These migrations - typically involving billions of moths from different taxa - have recently attracted considerable scientific attention. Nocturnal moth migrations have traditionally been investigated by light trapping and by observations in the wild, but in recent times a considerable improvement in our understanding of this phenomenon has come from studying insect orientation behaviour, using vertical-looking radar. In order to establish a new model organism to study compass mechanisms in migratory moths, we tethered each of two species of central European Noctuid moths in a flight simulator to study their flight bearings: the red underwing (Catocala nupta) and the large yellow underwing (Noctua pronuba). Both species had significantly oriented flight bearings under an unobscured view of the clear night sky and in the Earth's natural magnetic field. Red underwings oriented south-southeast, while large yellow underwings oriented southwest, both suggesting a southerly autumn migration towards the Mediterranean. Interestingly, large yellow underwings became disoriented on humid (foggy) nights while red underwings remained oriented. We found no evidence in either species for a time-independent sky compass mechanism as previously suggested for the large yellow underwing.
  •  
9.
  • El Jundi, Basil, et al. (författare)
  • A snapshot-based mechanism for celestial orientation
  • 2016
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • n order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2, 3, 4, 5, 6, 7 and 8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9 and 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a “celestial snapshot,” even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the “dance,” a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation.
  •  
10.
  • el Jundi, Basil, et al. (författare)
  • Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation.
  • 2014
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 1477-9145 .- 0022-0949. ; 217:13, s. 2422-2429
  • Tidskriftsartikel (refereegranskat)abstract
    • To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure an their efficient escape from the dung pile, the beetles rely on a celestial compass to move along a straight paths. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun, but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90°. The beetles then changed their bearing close to the expected 90°. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. If the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. We therefore analyzed the use of the celestial intensity gradient for orientation. Artificially rotating the intensity pattern by 180° caused beetles to orient in the opposite direction. The intensity cue was also found to be subordinate to the sun, and could play a role in disambiguating the polarization signal, especially at low sun elevations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy