1. |
- Pulit, S. L., et al.
(författare)
-
Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
- 2018
-
Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
-
Tidskriftsartikel (refereegranskat)abstract
- Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
|
|
2. |
|
|
3. |
|
|
4. |
|
|
5. |
|
|
6. |
|
|
7. |
|
|
8. |
- Locke, Adam E, et al.
(författare)
-
Genetic studies of body mass index yield new insights for obesity biology.
- 2015
-
Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
-
Tidskriftsartikel (refereegranskat)abstract
- Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
|
|
9. |
|
|
10. |
- Shepherd, L., et al.
(författare)
-
Infection-related and -unrelated malignancies, HIV and the aging population
- 2016
-
Ingår i: HIV Medicine. - : Wiley-Blackwell. - 1464-2662 .- 1468-1293. ; 17:8, s. 590-600
-
Tidskriftsartikel (refereegranskat)abstract
- Objectives: HIV-positive people have increased risk of infection-related malignancies (IRMs) and infection-unrelated malignancies (IURMs). The aim of the study was to determine the impact of aging on future IRM and IURM incidence. Methods: People enrolled in EuroSIDA and followed from the latest of the first visit or 1 January 2001 until the last visit or death were included in the study. Poisson regression was used to investigate the impact of aging on the incidence of IRMs and IURMs, adjusting for demographic, clinical and laboratory confounders. Linear exponential smoothing models forecasted future incidence. Results: A total of 15 648 people contributed 95 033 person-years of follow-up, of whom 610 developed 643 malignancies [IRMs: 388 (60%); IURMs: 255 (40%)]. After adjustment, a higher IRM incidence was associated with a lower CD4 count [adjusted incidence rate ratio (aIRR) CD4 count < 200 cells/μL: 3.77; 95% confidence interval (CI) 2.59, 5.51; compared with ≥ 500 cells/μL], independent of age, while a CD4 count < 200 cells/μL was associated with IURMs in people aged < 50 years only (aIRR: 2.51; 95% CI 1.40–4.54). Smoking was associated with IURMs (aIRR: 1.75; 95% CI 1.23, 2.49) compared with never smokers in people aged ≥ 50 years only, and not with IRMs. The incidences of both IURMs and IRMs increased with older age. It was projected that the incidence of IRMs would decrease by 29% over a 5-year period from 3.1 (95% CI 1.5–5.9) per 1000 person-years in 2011, whereas the IURM incidence would increase by 44% from 4.1 (95% CI 2.2–7.2) per 1000 person-years over the same period. Conclusions: Demographic and HIV-related risk factors for IURMs (aging and smoking) and IRMs (immunodeficiency and ongoing viral replication) differ markedly and the contribution from IURMs relative to IRMs will continue to increase as a result of aging of the HIV-infected population, high smoking and lung cancer prevalence and a low prevalence of untreated HIV infection. These findings suggest the need for targeted preventive measures and evaluation of the cost−benefit of screening for IURMs in HIV-infected populations.
|
|