1. |
- Ducharme, Simon, et al.
(författare)
-
Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders
- 2020
-
Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 143:6, s. 1632-1650
-
Tidskriftsartikel (refereegranskat)abstract
- The behavioural variant of frontotemporal dementia (bvFTD) is a frequent cause of early-onset dementia. The diagnosis of bvFTD remains challenging because of the limited accuracy of neuroimaging in the early disease stages and the absence of molecular biomarkers, and therefore relies predominantly on clinical assessment. BvFTD shows significant symptomatic overlap with non-degenerative primary psychiatric disorders including major depressive disorder, bipolar disorder, schizophrenia, obsessive-compulsive disorder, autism spectrum disorders and even personality disorders. To date, ∼50% of patients with bvFTD receive a prior psychiatric diagnosis, and average diagnostic delay is up to 5-6 years from symptom onset. It is also not uncommon for patients with primary psychiatric disorders to be wrongly diagnosed with bvFTD. The Neuropsychiatric International Consortium for Frontotemporal Dementia was recently established to determine the current best clinical practice and set up an international collaboration to share a common dataset for future research. The goal of the present paper was to review the existing literature on the diagnosis of bvFTD and its differential diagnosis with primary psychiatric disorders to provide consensus recommendations on the clinical assessment. A systematic literature search with a narrative review was performed to determine all bvFTD-related diagnostic evidence for the following topics: bvFTD history taking, psychiatric assessment, clinical scales, physical and neurological examination, bedside cognitive tests, neuropsychological assessment, social cognition, structural neuroimaging, functional neuroimaging, CSF and genetic testing. For each topic, responsible team members proposed a set of minimal requirements, optimal clinical recommendations, and tools requiring further research or those that should be developed. Recommendations were listed if they reached a ≥ 85% expert consensus based on an online survey among all consortium participants. New recommendations include performing at least one formal social cognition test in the standard neuropsychological battery for bvFTD. We emphasize the importance of 3D-T1 brain MRI with a standardized review protocol including validated visual atrophy rating scales, and to consider volumetric analyses if available. We clarify the role of 18F-fluorodeoxyglucose PET for the exclusion of bvFTD when normal, whereas non-specific regional metabolism abnormalities should not be over-interpreted in the case of a psychiatric differential diagnosis. We highlight the potential role of serum or CSF neurofilament light chain to differentiate bvFTD from primary psychiatric disorders. Finally, based on the increasing literature and clinical experience, the consortium determined that screening for C9orf72 mutation should be performed in all possible/probable bvFTD cases or suspected cases with strong psychiatric features.
|
|
2. |
- Eratne, Dhamidhu, et al.
(författare)
-
Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors
- 2022
-
Ingår i: Journal of the Neurological Sciences. - : Elsevier. - 0022-510X. ; 442
-
Tidskriftsartikel (refereegranskat)abstract
- Background: Distinguishing behavioural variant frontotemporal dementia (bvFTD) from non-neurodegenerative ‘non-progressor’ mimics of frontal lobe dysfunction, can be one of the most challenging clinical dilemmas. A biomarker of neuronal injury, neurofilament light chain (NfL), could reduce misdiagnosis and delay. Methods: Cerebrospinal fluid (CSF) NfL, amyloid beta 1–42 (AB42), total and phosphorylated tau (T-tau, P-tau) levels were examined in patients with an initial diagnosis of bvFTD. Based on follow-up information, patients were categorised as Progressors or Non-Progressors: further subtyped into Non-Progressor Revised (non-neurological/neurodegenerative final diagnosis), and Non-Progressor Static (static deficits, not fully explained by non-neurological/neurodegenerative causes). Results: Forty-three patients were included: 20 Progressors, 23 Non-Progressors (15 Non-Progressor Revised, 8 Non-Progressor Static), and 20 controls. NfL concentrations were lower in Non-Progressors (Non-Progressors Mean, M = 554 pg/mL, 95%CI:[461, 675], Non-Progressor Revised M = 459 pg/mL, 95%CI:[385, 539], and Non-Progressor Static M = 730 pg/mL, 95%CI:[516, 940]), compared to Progressors (M = 2397 pg/mL, 95%CI:[1607, 3332]). NfL distinguished Progressors from Non-Progressors with the highest accuracy (area under the curve 0.92, 90%/87% sensitivity/specificity, 86%/91% positive/negative predictive value, 88% accuracy). Non-Progressor Static tended to have higher T-tau and P-tau levels compared to Non-Progressor Revised Diagnoses. Conclusion: This study demonstrated strong diagnostic utility of CSF NfL to distinguish bvFTD from non-progressor variants, at baseline, with high accuracy, in a real-world clinical setting. This has important clinical implications, to improve outcomes for patients and clinicians facing this challenging clinical dilemma, healthcare services, and clinical trials. Further research is required to investigate heterogeneity within the non-progressor group and potential diagnostic algorithms, and prospective studies are underway assessing plasma NfL.
|
|
3. |
- Jakabek, David, et al.
(författare)
-
Regional structural hypo- and hyperconnectivity of frontal–striatal and frontal–thalamic pathways in behavioral variant frontotemporal dementia
- 2018
-
Ingår i: Human Brain Mapping. - : Wiley-Blackwell. - 1065-9471. ; 39:10, s. 4083-4093
-
Tidskriftsartikel (refereegranskat)abstract
- Behavioral variant frontotemporal dementia (bvFTD) has been predominantly considered as a frontotemporal cortical disease, with limited direct investigation of frontal–subcortical connections. We aim to characterize the grey and white matter components of frontal–thalamic and frontal–striatal circuits in bvFTD. Twenty-four patients with bvFTD and 24 healthy controls underwent morphological and diffusion imaging. Subcortical structures were manually segmented according to published protocols. Probabilistic pathways were reconstructed separately from the dorsolateral, orbitofrontal and medial prefrontal cortex to the striatum and thalamus. Patients with bvFTD had smaller cortical and subcortical volumes, lower fractional anisotropy, and higher mean diffusivity metrics, which is consistent with disruptions in frontal–striatal–thalamic pathways. Unexpectedly, regional volumes of the striatum and thalamus connected to the medial prefrontal cortex were significantly larger in bvFTD (by 135% in the striatum, p =.032, and 217% in the thalamus, p =.004), despite smaller dorsolateral prefrontal cortex connected regional volumes (by 67% in the striatum, p =.002, and 65% in the thalamus, p =.020), and inconsistent changes in orbitofrontal cortex connected regions. These unanticipated findings may represent compensatory or maladaptive remodeling in bvFTD networks. Comparisons are made to other neuropsychiatric disorders suggesting a common mechanism of changes in frontal–subcortical networks; however, longitudinal studies are necessary to test this hypothesis.
|
|
4. |
- Lindberg, Olof, et al.
(författare)
-
Hippocampal Shape Analysis in Alzheimer's Disease and Frontotemporal Lobar Degeneration Subtypes
- 2012
-
Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 30:2, s. 355-365
-
Tidskriftsartikel (refereegranskat)abstract
- Hippocampal pathology is central to Alzheimer's disease (AD) and other forms of dementia such as frontotemporal lobar degeneration (FTLD). Autopsy studies have shown that certain hippocampal subfields are more vulnerable than others to AD and FTLD pathology, in particular the subiculum and cornu ammonis 1 (CA1). We conducted shape analysis of hippocampi segmented from structural T1 MRI images on clinically diagnosed dementia patients and controls. The subjects included 19 AD and 35 FTLD patients [13 frontotemporal dementia (FTD), 13 semantic dementia (SD), and 9 progressive nonfluent aphasia (PNFA)] and 21 controls. Compared to controls, SD displayed severe atrophy of the whole left hippocampus. PNFA and FTD also displayed atrophy on the left side, restricted to the hippocampal head in FTD. Finally, AD displayed most atrophy in left hippocampal body with relative sparing of the hippocampal head. Consistent with neuropathological studies, most atrophic deformation was found in CA1 and subiculum areas in FTLD and AD.
|
|
5. |
- Looi, Jeffrey C. L., et al.
(författare)
-
Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy
- 2011
-
Ingår i: Psychiatry Research: Neuroimaging. - : Elsevier. - 0925-4927. ; 194:2, s. 163-175
-
Tidskriftsartikel (refereegranskat)abstract
- Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by gait and postural disturbance, gaze palsy, apathy, decreased verbal fluency and dysexecutive symptoms, with some of these clinical features potentially having origins in degeneration of frontostriatal circuits and the mesencephalon. This hypothesis was investigated by manual segmentation of the caudate and putamen on MRI scans, using previously published protocols, in 15 subjects with PSP and 15 healthy age-matched controls. Midbrain atrophy was assessed by measurement of mid-sagittal area of the midbrain and pons. Shape analysis of the caudate and putamen was performed using spherical harmonics (SPHARM-PDM, University of North Carolina). The sagittal pons area/midbrain area ratio (P/M ratio) was significantly higher in the PSP group, consistent with previous findings. Significantly smaller striatal volumes were found in the PSP group - putamina were 10% smaller and caudate volumes were 17% smaller than in controls after controlling for age and intracranial volume. Shape analysis revealed significant shape deflation in PSP in the striatum, compared to controls; with regionally significant change relevant to frontostriatal and corticostriatal circuits in the caudate. Thus, in a clinically diagnosed and biomarker-confirmed cohort with early PSP, we demonstrate that neostriatal volume and shape are significantly reduced in vivo. The findings suggest a neostriatal and mesencephalic structural basis for the clinical features of PSP leading to frontostriatal and mesocortical-striatal circuit disruption. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
|
|
6. |
- Looi, Jefferey Chee Leong, et al.
(författare)
-
Shape analysis of the neostriatum in frontotemporal lobar degeneration, Alzheimer's disease, and controls
- 2010
-
Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 51:3, s. 970-986
-
Tidskriftsartikel (refereegranskat)abstract
- Background and purpose: Frontostriatal circuit mediated cognitive dysfunction has been implicated in frontotemporal lobar degeneration (FTLD), but not Alzheimer's disease, or healthy aging. We measured the neostriatum (caudate nucleus and putamen) volume in FTLD (n=34), in comparison with controls (n=27) and Alzheimer's disease (AD, n=19) subjects. Methods: Diagnoses were based on international consensus criteria. Manual bilateral segmentation of the caudate nucleus and putamen was conducted blind to diagnosis by a single analyst, on MRI scans using a standardized protocol. Intra-cranial volume was calculated via a stereological point counting technique and was used for scaling the shape analysis. The manual segmentation binaries were analyzed using UNC Shape Analysis tools (University of North Carolina) to perform comparisons among FTLD, AD, and controls for global shape, local p-value significance maps, and mean magnitude of shape displacement. Results: Shape analysis revealed that there was significant shape difference between FTLD, AD, and controls, consistent with the predicted frontostriatal dysfunction and of significant magnitude, as measured by displacement maps. There was a lateralized difference in shape for the left caudate for FTLD compared to AD; non-specific global atrophy in AD compared to controls; while FTLD showed a more specific pattern in regions relaying fronto- and corticostriatal circuits. Conclusions: Shape analysis shows regional specificity of atrophy, manifest as shape deflation, with implications for frontostriatal and corticostriatal motoric circuits, in FTLD, AD, and controls.
|
|
7. |
- Looi, Jeffrey Chee Leong, et al.
(författare)
-
Shape analysis of the neostriatum in subtypes of frontotemporal lobar degeneration : neuroanatomically significant regional morphologic change
- 2011
-
Ingår i: Psychiatry Research. - : Elsevier BV. - 0925-4927 .- 1872-7506 .- 0165-1781. ; 191:2, s. 98-111
-
Tidskriftsartikel (refereegranskat)abstract
- Frontostriatal circuit mediated cognitive dysfunction has been implicated in frontotemporal lobar degeneration (FTLD) and may differ across subtypes of FTLD. We manually segmented the neostriatum (caudate nucleus and putamen) in FTLD subtypes: behavioral variant frontotemporal dementia, FTD, n=12; semantic dementia, SD, n=13; and progressive non-fluent aphasia, PNFA, n=9); in comparison with controls (n=27). Diagnoses were based on international consensus criteria. Manual bilateral segmentation of the caudate nucleus and putamen was conducted blind to diagnosis by a single analyst, on MRI scans using a standardized protocol. Intracranial volume was calculated via a stereological point counting technique and was used for normalizing the shape analysis. Segmented binaries were analyzed using the Spherical Harmonic (SPHARM) Shape Analysis tools (University of North Carolina) to perform comparisons between FTLD subtypes and controls for global shape difference, local significance maps and mean magnitude maps of shape displacement. Shape analysis revealed that there was significant shape difference between FTLD subtypes and controls, consistent with the predicted frontostriatal dysfunction and of significant magnitude, as measured by displacement maps. These differences were not significant for SD compared to controls; lesser for PNFA compared to controls; whilst FTD showed a more specific pattern in regions relaying fronto- and corticostriatal circuits. Shape analysis shows regional specificity of atrophy, manifest as shape deflation, with a differential between FTLD subtypes, compared to controls.
|
|
8. |
- Looi, Jeffrey C. L., et al.
(författare)
-
The Australian, US, Scandinavian Imaging Exchange (AUSSIE): an innovative, virtually-integrated health research network embedded in health care
- 2014
-
Ingår i: Australasian Psychiatry. - : SAGE Publications. - 1039-8562 .- 1440-1665. ; 22:3, s. 260-265
-
Tidskriftsartikel (refereegranskat)abstract
- Objective: To describe the development, design and function of an innovative international clinical research network for neuroimaging research, based in Australia, within a joint state health service/medical school. This Australian, US, Scandinavian Imaging Exchange (AUSSIE) network focuses upon identifying neuroimaging biomarkers for neuropsychiatric and neurodegenerative disease. Methods: We describe a case study of the iterative development of the network, identifying characteristic features and methods which may serve as potential models for virtual clinical research networks. This network was established to analyse clinically-derived neuroimaging data relevant to neuropsychiatric and neurodegenerative disease, specifically in relation to subcortical brain structures. Results: The AUSSIE network has harnessed synergies from the individual expertise of the component groups, primarily clinical neuroscience researchers, to analyse a variety of clinical data. Conclusion: AUSSIE is an active virtual clinical research network, analogous to a connectome, which is embedded in health care and has produced significant research, advancing our understanding of neuropsychiatric and neurodegenerative disease through the lens of neuroimaging.
|
|
9. |
|
|
10. |
- Macfarlane, Matthew D, et al.
(författare)
-
Striatal Atrophy in the Behavioural Variant of Frontotemporal Dementia: Correlation with Diagnosis, Negative Symptoms and Disease Severity.
- 2015
-
Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
-
Tidskriftsartikel (refereegranskat)abstract
- Behavioural variant frontotemporal dementia (bvFTD) is associated with changes in dorsal striatal parts of the basal ganglia (caudate nucleus and putamen), related to dysfunction in the cortico-striato-thalamic circuits which help mediate executive and motor functions. We aimed to determine whether the size and shape of striatal structures correlated with diagnosis of bvFTD, and measures of clinical severity, behaviour and cognition.
|
|