41. |
|
|
42. |
- Cacciaglia, R., et al.
(författare)
-
Age, sex and APOE-epsilon 4 modify the balance between soluble and fibrillar beta-amyloid in non-demented individuals: topographical patterns across two independent cohorts
- 2022
-
Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27
-
Tidskriftsartikel (refereegranskat)abstract
- Amyloid (A beta) pathology is the earliest detectable pathophysiological event along the Alzheimer's continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct A beta pools, reflecting the clearance of soluble A beta as opposed to the presence of A beta fibrils in the brain. An open question is whether risk factors known to increase Alzheimer's' disease (AD) prevalence may promote an imbalance between soluble and deposited A beta. Unveiling such interactions shall aid our understanding of the biological pathways underlying A beta deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-epsilon 4 and female sex, on the association between CSF and PET A beta, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher A beta deposition for any given level of CSF A beta 42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-epsilon 4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-epsilon 4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral A beta aggregation, with APOE-epsilon 4 possibly facilitating a co-localization between A beta and tau along the disease continuum.
|
|
43. |
|
|
44. |
- Cacciaglia, R, et al.
(författare)
-
Age, sex and APOE-ε4 modify the balance between soluble and fibrillar β-amyloid in non-demented individuals: topographical patterns across two independent cohorts
- 2022
-
Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:4, s. 2010-2018
-
Tidskriftsartikel (refereegranskat)abstract
- Amyloid (Aβ) pathology is the earliest detectable pathophysiological event along the Alzheimer’s continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct Aβ pools, reflecting the clearance of soluble Aβ as opposed to the presence of Aβ fibrils in the brain. An open question is whether risk factors known to increase Alzheimer’s’ disease (AD) prevalence may promote an imbalance between soluble and deposited Aβ. Unveiling such interactions shall aid our understanding of the biological pathways underlying Aβ deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-ε4 and female sex, on the association between CSF and PET Aβ, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher Aβ deposition for any given level of CSF Aβ42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-ε4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-ε4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral Aβ aggregation, with APOE-ε4 possibly facilitating a co-localization between Aβ and tau along the disease continuum.
|
|
45. |
|
|
46. |
|
|
47. |
- Chang, H., et al.
(författare)
-
The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders
- 2018
-
Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 23:2, s. 400-412
-
Tidskriftsartikel (refereegranskat)abstract
- Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.
|
|
48. |
|
|
49. |
- Chiotis, Konstantinos, et al.
(författare)
-
[F-18]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer's disease
- 2021
-
Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:10, s. 5875-5887
-
Tidskriftsartikel (refereegranskat)abstract
- Cross-sectional studies have indicated potential for positron emission tomography (PET) in imaging tau pathology in Alzheimer's disease (AD); however, its prognostic utility remains unproven. In a longitudinal, multi-modal, prognostic study of cognitive decline, 20 patients with a clinical biomarker-based diagnosis in the AD spectrum (mild cognitive impairment or dementia and a positive amyloid-beta PET scan) were recruited from the Cognitive Clinic at Karolinska University Hospital. The participants underwent baseline neuropsychological assessment, PET imaging with [F-18]THK5317, [C-11]PIB and [F-18]FDG, magnetic resonance imaging, and in a subgroup cerebrospinal fluid (CSF) sampling, with clinical follow-up after a median 48 months (interquartile range = 32:56). In total, 11 patients declined cognitively over time, while 9 remained cognitively stable. The accuracy of baseline [F-18]THK5317 binding in temporal areas was excellent at predicting future cognitive decline (area under the receiver operating curve 0.84-1.00) and the biomarker levels were strongly associated with the rate of cognitive decline (beta estimate -33.67 to -31.02,p < 0.05). The predictive accuracy of the other baseline biomarkers was poor (area under the receiver operating curve 0.58-0.77) and their levels were not associated with the rate of cognitive decline (beta estimate -4.64 to 15.78,p > 0.05). Baseline [F-18]THK5317 binding and CSF tau levels were more strongly associated with the MMSE score at follow-up than at baseline (p < 0.05). These findings support a temporal dissociation between tau deposition and cognitive impairment, and suggest that [F-18]THK5317 predicts future cognitive decline better than other biomarkers. The use of imaging markers for tau pathology could prove useful for clinical prognostic assessment and screening before inclusion in relevant clinical trials.
|
|
50. |
- Chiotis, K., et al.
(författare)
-
Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer's disease dementia
- 2018
-
Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 23:7, s. 1666-1673
-
Tidskriftsartikel (refereegranskat)abstract
- The development of tau-specific positron emission tomography (PET) tracers allows imaging in vivo the regional load of tau pathology in Alzheimer's disease (AD) and other tauopathies. Eighteen patients with baseline investigations enroled in a 17-month follow-up study, including 16 with AD (10 had mild cognitive impairment and a positive amyloid PET scan, that is, prodromal AD, and six had AD dementia) and two with corticobasal syndrome. All patients underwent PET scans with [F-18]THK5317 (tau deposition) and [F-18]FDG (glucose metabolism) at baseline and follow-up, neuropsychological assessment at baseline and follow-up and a scan with [C-11]PIB (amyloid-beta deposition) at baseline only. At a group level, patients with AD (prodromal or dementia) showed unchanged [F-18]THK5317 retention over time, in contrast to significant decreases in [F-18]FDG uptake in temporoparietal areas. The pattern of changes in [F-18]THK5317 retention was heterogeneous across all patients, with qualitative differences both between the two AD groups (prodromal and dementia) and among individual patients. High [F-18]THK5317 retention was significantly associated over time with low episodic memory encoding scores, while low [F-18]FDG uptake was significantly associated over time with both low global cognition and episodic memory encoding scores. Both patients with corticobasal syndrome had a negative [C-11]PIB scan, high [F-18]THK5317 retention with a different regional distribution from that in AD, and a homogeneous pattern of increased [F-18]THK5317 retention in the basal ganglia over time. These findings highlight the heterogeneous propagation of tau pathology among patients with symptomatic AD, in contrast to the homogeneous changes seen in glucose metabolism, which better tracked clinical progression.
|
|