SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0004 6361 OR L773:1432 0746 "

Sökning: L773:0004 6361 OR L773:1432 0746

  • Resultat 2711-2720 av 3258
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
2711.
  • Taquet, V., et al. (författare)
  • Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • Methanol is a key species in astrochemistry because it is the most abundant organic molecule in the interstellar medium and is thought to be the mother molecule of many complex organic species. Estimating the deuteration of methanol around young protostars is of crucial importance because it highly depends on its formation mechanisms and the physical conditions during its moment of formation. We analyse several dozen transitions from deuterated methanol isotopologues coming from various existing observational datasets obtained with the IRAM-PdBI and ALMA sub-millimeter interferometers to estimate the methanol deuteration surrounding three low-mass protostars on Solar System scales. A population diagram analysis allows us to derive a [CH2DOH]/[CH3OH] abundance ratio of 3-6% and a [CH3OD]/[CH3OH] ratio of 0.4-1.6%in the warm inner (≤100-200 AU) protostellar regions. These values are typically ten times lower than those derived with previous single-dish observations towards these sources, but they are one to two orders of magnitude higher than the methanol deuteration measured in massive hot cores. Dust temperature maps obtained from Herschel and Planck observations show that massive hot cores are located in warmer molecular clouds than low-mass sources, with temperature differences of ∼10 K. The comparison of our measured values with the predictions of the gas-grain astrochemical model GRAINOBLE shows that such a temperature difference is sufficient to explain the different deuteration observed in low- to high-mass sources. This suggests that the physical conditions of the molecular cloud at the origin of the protostars mostly govern the present-day observed deuteration of methanol and therefore of more complex organic molecules. Finally, the methanol deuteration measured towards young solar-type protostars on Solar System scales seems to be higher by a factor of ∼5 than the upper limit in methanol deuteration estimated in comet Hale-Bopp. If this result is confirmed by subsequent observations of other comets, it would imply that an important reprocessing of the organic material likely occurred in the solar nebula during the formation of the Solar System.
  •  
2712.
  • Taquet, V., et al. (författare)
  • Linking interstellar and cometary O2: A deep search for 16O18O in the solar-Type protostar IRAS 16293b-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent measurements carried out at comet 67P/Churyumov-Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21-01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293-2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s-1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3-0.5 km s-1 relative to the source velocity, rendering the detection "tentative". We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2-5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5-15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.
  •  
2713.
  • Taquet, V, et al. (författare)
  • Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC1333-IRAS4A
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC1333-IRAS4A in the 1.3, 2, and 3mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east-south west direction. SO is detected at extremely high radial velocity up to +25 km s 1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm 3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2.
  •  
2714.
  • Tartaglia, Leonardo, et al. (författare)
  • SN 2018ijp : the explosion of a stripped-envelope star within a dense H-rich shell?
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.
  •  
2715.
  • Tartaglia, Leonardo, et al. (författare)
  • The long-lived Type IIn SN 2015da : Infrared echoes and strong interaction within an extended massive shell star star star
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we report the results of the first similar to four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NGC 5337 in a relatively highly extinguished environment. The transient showed prominent narrow Balmer lines in emission at all times and a slow rise to maximum in all bands. In addition, early observations performed by amateur astronomers give a very well-constrained explosion epoch. The observables are consistent with continuous interaction between the supernova ejecta and a dense and extended H-rich circumstellar medium. The presence of such an extended and dense medium is difficult to reconcile with standard stellar evolution models, since the metallicity at the position of SN 2015da seems to be slightly subsolar. Interaction is likely the mechanism powering the light curve, as confirmed by the analysis of the pseudo bolometric light curve, which gives a total radiated energy greater than or similar to 10(51) erg. Modeling the light curve in the context of a supernova shock breakout through a dense circumstellar medium allowed us to infer the mass of the prexisting gas to be similar or equal to 8 M-circle dot, with an extreme mass-loss rate for the progenitor star similar or equal to 0.6 M-circle dot yr(-1), suggesting that most of the circumstellar gas was produced during multiple eruptive events. Near- and mid-infrared observations reveal a fluxexcess in these domains, similar to those observed in SN 2010jl and other interacting transients, likely due to preexisting radiatively heated dust surrounding the supernova. By modeling the infrared excess, we infer a mass greater than or similar to 0.4 x 10(-3) M-circle dot for the dust.
  •  
2716.
  • Tauber, J. A., et al. (författare)
  • Characterization of the in-flight properties of the Planck telescope
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's Planck satellite was launched on 14 May 2009, and surveyed the sky stably and continuously between August 2009 and October 2013. The scientific analysis of the Planck data requires understanding the optical response of its detectors, which originates partly from a physical model of the optical system. In this paper, we use in-flight measurements of planets within similar to 1 degrees of boresight to estimate the geometrical properties of the telescope and focal plane. First, we use observed grating lobes to measure the amplitude of mechanical dimpling of the reflectors, which is caused by the hexagonal honeycomb structure of the carbon fibre reflectors. We find that the dimpling amplitude on the two reflectors is larger than expected from the ground, by 20% on the secondary and at least a factor of 2 on the primary. Second, we use the main beam shapes of 26 detectors to investigate the alignment of the various elements of the optical system, as well as the large-scale deformations of the reflectors. We develop a metric to guide an iterative fitting scheme, and are able to determine a new geometric model that fits the in-flight measurements better than the pre-flight prediction according to this metric. The new alignment model is within the mechanical tolerances expected from the ground, with some specific but minor exceptions. We find that the reflectors contain large-scale sinusoidal deformations most probably related to the mechanical supports. In spite of the better overall fit, the new model still does not fit the beam measurements at a level compatible with the needs of cosmological analysis. Nonetheless, future analysis of the Planck data would benefit from taking into account some of the features of the new model. The analysis described here exemplifies some of the limitations of in-flight retrieval of the geometry of an optical system similar to that of Planck, and provides useful information for similar efforts in future experiments.
  •  
2717.
  • Tautvaisiene, Grazina, et al. (författare)
  • Chemical composition of evolved stars in the open Cluster NGC 7789
  • 2005
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 431:3, s. 933-942
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution spectra of six giants and three core-helium-burning “clump” stars in the open cluster NGC 7789 have been obtained with the SOFIN spectrograph on the Nordic Optical Telescope to investigate abundances of up to 20 chemical elements. Abundances of carbon were studied using the C2 Swan (0, 1) band head at 5635.5 Å. The wavelength interval 7980 8130 Å with strong CN features was analysed in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O I] line at 6300 Å. The overall metallicity of evolved stars in the cluster was found to be close to solar ([Fe/H]=-0.04±0.05). Compared with the Sun and other dwarf stars of the Galactic disk, mean abundances in the investigated giant stars suggest that carbon is depleted by about 0.2 dex, and nitrogen and oxygen are close to solar. In the clump stars investigated, carbon is depleted by about 0.2 dex, the mean abundance of nitrogen is enhanced by 0.26 dex and oxygen is lower by 0.14 dex. This has the effect of lowering the mean C/N ratios to the value of 1.9±0.5 in the giant stars and to the value of 1.3±0.2 in the clump stars. The mean 12C/13C ratios are lowered to about the same value of 9±1 in the giants and clump stars investigated. Concerning other chemical elements an overabundance of sodium is noticeable and of silicon and calcium one is suspected. Abundances of iron-group and heavier chemical elements in all nine stars were found to be close to solar.
  •  
2718.
  • Telloni, D., et al. (författare)
  • First polar observations of the fast solar wind with the Metis - Solar Orbiter coronagraph : Role of 2D turbulence energy dissipation in the wind acceleration
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fast solar wind is known to emanate from polar coronal holes.Aims. This Letter reports the first estimate of the expansion rate of polar coronal flows performed by the Metis coronagraph on board Solar Orbiter.Methods. By exploiting simultaneous measurements in polarized white light and ultraviolet intensity of the neutral hydrogen Lyman-α line, it was possible to extend observations of the outflow velocity of the main component of the solar wind from polar coronal holes out to 5.5 R⊙, the limit of diagnostic applicability and observational capabilities.Results. We complement the results obtained with analogous polar observations performed with the UltraViolet Coronagraph Spectrometer on board the SOlar and Heliospheric Observatory during the previous full solar activity cycle, and find them to be satisfactorily reproduced by a magnetohydrodynamic turbulence model.Conclusions. This suggests that the dissipation of 2D turbulence energy is a viable mechanism for coronal plasma heating and the subsequent acceleration of the fast solar wind.
  •  
2719.
  • Telloni, D., et al. (författare)
  • Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage Observations and modeling
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft.Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7-8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS.Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs' magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively.Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data.Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction.
  •  
2720.
  • Tengstrand, Olof, et al. (författare)
  • The X-ray view of giga-hertz peaked spectrum radio galaxies
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 501:1, s. 89-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. This paper presents the X-ray properties of a flux- and volume-limited complete sample of 16 giga-hertz peaked spectrum (GPS) galaxies. Aims. This study addresses three basic questions in our understanding of the nature and evolution of GPS sources: a) What is the physical origin of the X-ray emission in GPS galaxies? b) Which physical system is associated with the X-ray obscuration? c) What is the "endpoint" of the evolution of compact radio sources? Methods. We discuss in this paper the results of the X-ray spectral analysis, and compare the X-ray properties of the sample sources with radio observables. Results. We obtain a 100% (94%) detection fraction in the 0.5-2 keV (0.5-10 keV) energy band. GPS galaxy X-ray spectra are typically highly obscured (less than N-H(GPS)greater than = 3 x 10(22) cm(-2); sigma(NH) similar or equal to 0.5 dex). The X-ray column density is larger than the HI column density measured in the radio by a factor 10 to 100. GPS galaxies lie well on the extrapolation to high radio powers of the correlation between radio and X-ray luminosity known in low-luminosity FR I radio galaxies. On the other hand, GPS galaxies exhibit a comparable X-ray luminosity to FR II radio galaxies, notwithstanding their much larger radio luminosity. Conclusions. The X-ray to radio luminosity ratio distribution in our sample is consistent with the bulk of the high-energy emission being produced by the accretion disk, as well as with dynamical models of GPS evolution where X-rays are produced by Compton upscattering of ambient photons. Further support to the former scenario comes from the location of GPS galaxies in the X-ray to O[III] luminosity ratio versus N-H plane. We propose that GPS galaxies are young radio sources, which would reach their full maturity as classical FR II radio galaxies. However, column densities greater than or similar to 10(22) cm(-2) could lead to a significant underestimate of dynamical age determinations based on the hotspot recession velocity measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 2711-2720 av 3258
Typ av publikation
tidskriftsartikel (3232)
forskningsöversikt (25)
konferensbidrag (1)
Typ av innehåll
refereegranskat (3210)
övrigt vetenskapligt/konstnärligt (38)
populärvet., debatt m.m. (10)
Författare/redaktör
Kochukhov, Oleg (117)
Quirrenbach, A. (109)
Randich, S. (109)
Gilmore, G. (106)
Hofmann, W. (102)
Aalto, Susanne, 1964 (101)
visa fler...
Vlemmings, Wouter, 1 ... (99)
Heiter, Ulrike (97)
Wagner, S. J. (96)
Bulik, T. (95)
Zdziarski, A. A. (94)
Boisson, C. (93)
Kluzniak, W. (93)
Moderski, R. (93)
Becherini, Yvonne (92)
Fontaine, G. (92)
Khelifi, B. (92)
Kosack, K. (92)
Moulin, E. (92)
Aharonian, F. (91)
Glicenstein, J. F. (91)
Komin, Nu. (91)
de Naurois, M. (91)
Ohm, S. (91)
Rieger, F. (91)
Rudak, B. (91)
Sahakian, V. (91)
Egberts, K. (90)
Gallant, Y. A. (90)
Hinton, J. A. (90)
Horns, D. (90)
Marandon, V. (90)
Marcowith, A. (90)
Niemiec, J. (90)
Ostrowski, M. (90)
Panter, M. (90)
Santangelo, A. (90)
Terrier, R. (90)
Segransan, D. (90)
Lohse, T. (89)
Djannati-Atai, A. (89)
Katarzynski, K. (89)
Renaud, M. (89)
Sol, H. (89)
Steenkamp, R. (89)
Venter, C. (89)
Zech, A. (89)
Reimer, O. (88)
Schwanke, U. (88)
van Eldik, C. (88)
visa färre...
Lärosäte
Stockholms universitet (1104)
Chalmers tekniska högskola (892)
Uppsala universitet (827)
Lunds universitet (552)
Kungliga Tekniska Högskolan (228)
Linnéuniversitetet (124)
visa fler...
Malmö universitet (69)
Luleå tekniska universitet (64)
Göteborgs universitet (45)
Umeå universitet (27)
Högskolan i Halmstad (22)
Linköpings universitet (11)
Mittuniversitetet (5)
RISE (3)
Högskolan Kristianstad (2)
Högskolan Dalarna (1)
Blekinge Tekniska Högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (3230)
Odefinierat språk (25)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3002)
Teknik (111)
Medicin och hälsovetenskap (7)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy