SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X "

Sökning: L773:0012 1797 OR L773:1939 327X

  • Resultat 61-70 av 682
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Bouzakri, K, et al. (författare)
  • IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:3, s. 785-791
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1–associated phosphatidylinositol 3-kinase activity, and extracellular signal–regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal IRS-1 Ser (312) and Ser (616) phosphorylation was also increased in nondiabetic kidney transplant recipients. Insulin increased phosphorylation of IRS-1 at Ser (312) but not Ser (616) in healthy subjects, with impairments noted in nondiabetic kidney and pancreas-kidney transplant recipients. Insulin action on ERK-1/2 and Akt phosphorylation was impaired in pancreas-kidney transplant recipients and was preserved in nondiabetic kidney transplant recipients. Importantly, insulin stimulation of the Akt substrate AS160 was impaired in nondiabetic kidney and pancreas-kidney transplant recipients. In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia.
  •  
62.
  • Brolén, Gabriella, et al. (författare)
  • Signals From the Embryonic Mouse Pancreas Induce Differentiation of Human Embryonic Stem Cells Into Insulin-Producing {beta}-Cell-Like Cells.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 2867-2874
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent success in restoring normoglycemia in type 1 diabetes by islet cell transplantation indicates that cell replacement therapy of this severe disease is achievable. However, the severe lack of donor islets has increased the demand for alternative sources of beta-cells, such as adult and embryonic stem cells. Here, we investigate the potential of human embryonic stem cells (hESCs) to differentiate into beta-cells. Spontaneous differentiation of hESCs under two-dimensional growth conditions resulted in differentiation of Pdx1(+)/Foxa2(+) pancreatic progenitors and Pdx1(+)/Isl1(+) endocrine progenitors but no insulin-producing cells. However, cotransplantation of differentiated hESCs with the dorsal pancreas, but not with the liver or telencephalon, from mouse embryos resulted in differentiation of beta-cell-like cell clusters. Comparative analysis of the basic characteristics of hESC-derived insulin(+) cell clusters with human adult islets demonstrated that the insulin(+) cells share important features with normal beta-cells, such as synthesis (proinsulin) and processing (C-peptide) of insulin and nuclear localization of key beta-cell transcription factors, including Foxa2, Pdx1, and Isl1.
  •  
63.
  • Brown, H, et al. (författare)
  • Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:3, s. 383-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptotagmin is involved in Ca2+-regulated secretion and has been suggested to serve as a general Ca2+ sensor on the membrane of secretory vesicles in neuronal cells. Insulin exocytosis from the pancreatic beta-cell is an example of a Ca2+-dependent secretory process. Previous studies of pancreatic beta-cells were unable to show presence of synaptotagmin I. We now present biochemical and immunohistochemical data showing that synaptotagmin III is present in pancreatic beta-cells as well as in the insulin-secreting cell line HIT-T15 and in rat insulinoma. By subcellular fractionation, we found synaptotagmin III in high-density fractions together with insulin and secretogranin I, indicating colocalization of synaptotagmin III and insulin in secretory granules. We could also show that blockade of synaptotagmin III by a specific antibody inhibited Ca2+-induced changes in beta-cell membrane capacitance, suggesting that synaptotagmin III is part of the functional protein complex regulating beta-cell exocytosis. The synaptotagmin III antibody did not affect the activity of the voltage-gated L-type Ca2+-channel. These findings are compatible with the view that synaptotagmin III, because of its distinct localization in the pancreatic beta-cell, functionally modulates insulin exocytosis. This indicates that synaptotagmin may have a general role in the regulation of exocytosis not only in neuronal cells but also in endocrine cells.
  •  
64.
  • Buschard, Karsten, et al. (författare)
  • C16:0 sulfatide inhibits insulin secretion in rat beta-cells by reducing the sensitivity of KATP channels to ATP inhibition
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:10, s. 2826-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfatide (3'-sulfo-beta-galactosyl ceramide) is a glycosphingolipid present in mammalians in various fatty acid isoforms of which the saturated 16 carbon-atom length (C16:0) is more abundant in pancreatic islets than in neural tissue, where long-chain sulfatide isoforms dominate. We previously reported that sulfatide isolated from pig brain inhibits glucose-induced insulin secretion by activation of ATP-sensitive K+ channels (K(ATP) channels). Here, we show that C16:0 sulfatide is the active isoform. It inhibits glucose-stimulated insulin secretion by reducing the sensitivity of the K(ATP) channels to ATP. (The half-maximal inhibitory concentration is 10.3 and 36.7 micromol/l in the absence and presence of C16:0 sulfatide, respectively.) C16:0 sulfatide increased whole-cell K(ATP) currents at intermediate glucose levels and reduced the ability of glucose to induce membrane depolarization, reduced electrical activity, and increased the cytoplasmic free Ca2+ concentration. Recordings of cell capacitance revealed that C16:0 sulfatide increased Ca2+-induced exocytosis by 215%. This correlated with a stimulation of insulin secretion by C16:0 sulfatide in intact rat islets exposed to diazoxide and high K+. C24:0 sulfatide or the sulfatide precursor, beta-galactosyl ceramide, did not affect any of the measured parameters. C16:0 sulfatide did not modulate glucagon secretion from intact rat islets. In betaTC3 cells, sulfatide was expressed (mean [+/-SD] 0.30 +/- 0.04 pmol/microg protein), and C16:0 sulfatide was found to be the dominant isoform. No expression of sulfatide was detected in alphaTC1-9 cells. We conclude that a major mechanism by which the predominant sulfatide isoform in beta-cells, C16:0 sulfatide, inhibits glucose-induced insulin secretion is by reducing the K(ATP) channel sensitivity to the ATP block.
  •  
65.
  • Butler, AE, et al. (författare)
  • Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:1, s. 102-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes is characterized by impaired insulin secretion. Some but not all studies suggest that a decrease in β-cell mass contributes to this. We examined pancreatic tissue from 124 autopsies: 91 obese cases (BMI >27 kg/m2; 41 with type 2 diabetes, 15 with impaired fasting glucose [IFG], and 35 nondiabetic subjects) and 33 lean cases (BMI <25 kg/m2; 16 type 2 diabetic and 17 nondiabetic subjects). We measured relative β-cell volume, frequency of β-cell apoptosis and replication, and new islet formation from exocrine ducts (neogenesis). Relative β-cell volume was increased in obese versus lean nondiabetic cases (P = 0.05) through the mechanism of increased neogenesis (P < 0.05). Obese humans with IFG and type 2 diabetes had a 40% (P < 0.05) and 63% (P < 0.01) deficit and lean cases of type 2 diabetes had a 41% deficit (P < 0.05) in relative β-cell volume compared with nondiabetic obese and lean cases, respectively. The frequency of β-cell replication was very low in all cases and no different among groups. Neogenesis, while increased with obesity, was comparable in obese type 2 diabetic, IFG, or nondiabetic subjects and in lean type 2 diabetic or nondiabetic subjects. However, the frequency of β-cell apoptosis was increased 10-fold in lean and 3-fold in obese cases of type 2 diabetes compared with their respective nondiabetic control group (P < 0.05). We conclude that β-cell mass is decreased in type 2 diabetes and that the mechanism underlying this is increased β-cell apoptosis. Since the major defect leading to a decrease in β-cell mass in type 2 diabetes is increased apoptosis, while new islet formation and β-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 diabetes, because this approach might actually reverse the disease to a degree rather than just palliate glycemia.
  •  
66.
  • Butler, AE, et al. (författare)
  • Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:9, s. 2304-2314
  • Tidskriftsartikel (refereegranskat)abstract
    • Nondiabetic obese humans adapt to insulin resistance by increasing β-cell mass. In contrast, obese humans with type 2 diabetes have an ∼60% deficit in β-cell mass. Recent studies in rodents reveal that β-cell mass is regulated, increasing in response to insulin resistance through increased β-cell supply (islet neogenesis and β-cell replication) and/or decreased β-cell loss (β-cell apoptosis). Prospective studies of islet turnover are not possible in humans. In an attempt to establish the mechanism for the deficit in β-cell mass in type 2 diabetes, we used an obese versus lean murine transgenic model for human islet amyloid polypeptide (IAPP) that develops islet pathology comparable to that in humans with type 2 diabetes. By 40 weeks of age, obese nontransgenic mice did not develop diabetes and adapted to insulin resistance by a 9-fold increase (P < 0.001) in β-cell mass accomplished by a 1.7-fold increase in islet neogenesis (P < 0.05) and a 5-fold increase in β-cell replication per islet (P < 0.001). Obese transgenic mice developed midlife diabetes with islet amyloid and an 80% (P < 0.001) deficit in β-cell mass that was due to failure to adaptively increase β-cell mass. The mechanism subserving this failed expansion was a 10-fold increase in β-cell apoptosis (P < 0.001). There was no relationship between the extent of islet amyloid or the blood glucose concentration and the frequency of β-cell apoptosis. However, the frequency of β-cell apoptosis was related to the rate of increase of islet amyloid. These prospective studies suggest that the formation of islet amyloid rather than the islet amyloid per se is related to increased β-cell apoptosis in this murine model of type 2 diabetes. This finding is consistent with the hypothesis that soluble IAPP oligomers but not islet amyloid are responsible for increased β-cell apoptosis. The current studies also support the concept that replicating β-cells are more vulnerable to apoptosis, possibly accounting for the failure of β-cell mass to expand appropriately in response to obesity in type 2 diabetes.
  •  
67.
  • Buzzetti, Raffaella, et al. (författare)
  • Management of latent autoimmune diabetes in adults : A consensus statement from an international expert panel
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2037-2047
  • Tidskriftsartikel (refereegranskat)abstract
    • A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose deviations for LADA from those guidelines. Within LADA, C-peptide values, proxy for b-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel: 1) C-peptide levels <0.3 nmol/L: A multiple-insulin regimen recommended as for T1D; 2) C-peptide values >0.3 and <0.7 nmol/L: Defined by the panel as a gray area in which a modified ADA/EASD algorithm for T2D is recommended; consider insulin in combination with other therapies to modulate β-cell failure and limit diabetic complications; 3) C-peptide values >0.7 nmol/L: Suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed noninsulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
  •  
68.
  • Cabric, Sanja, et al. (författare)
  • Islet Surface Heparinization Prevents the Instant-Blood Mediated Inflammatory Reaction in Islet Transplantation
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:8, s. 2008-2015
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE—In clinical islet transplantation, the instant blood-mediated inflammatory reaction (IBMIR) is a major factor contributing to the poor initial engraftment of the islets. This reaction is triggered by tissue factor and monocyte chemoattractant protein (MCP)-1, expressed by the transplanted pancreatic islets when the islets come in contact with blood in the portal vein. All currently identified systemic inhibitors of the IBMIR are associated with a significantly increased risk of bleeding or other side effects. To avoid systemic treatment, the aim of the present study was to render the islet graft blood biocompatible by applying a continuous heparin coating to the islet surface.RESEARCH DESIGN AND METHODS—A biotin/avidin technique was used to conjugate preformed heparin complexes to the surface of pancreatic islets. This endothelial-like coating was achieved by conjugating barely 40 IU heparin per full-size clinical islet transplant.RESULTS—Both in an in vitro loop model and in an allogeneic porcine model of clinical islet transplantation, this heparin coating provided protection against the IBMIR. Culturing heparinized islets for 24 h did not affect insulin release after glucose challenge, and heparin-coated islets cured diabetic mice in a manner similar to untreated islets.CONCLUSIONS—This novel pretreatment procedure prevents intraportal thrombosis and efficiently inhibits the IBMIR without increasing the bleeding risk and, unlike other pretreatment procedures (e.g., gene therapy), without inducing acute or chronic toxicity in the islets.
  •  
69.
  • Campbell, Catarina D., et al. (författare)
  • Association studies of BMI and type 2 diabetes in the neuropeptide y pathway - A possible role for NPY2R as a candidate gene for type 2 diabetes in men
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:5, s. 1460-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide Y (NPY) family of peptides and receptors regulate food intake. Inherited variation in this pathway could influence susceptibility to obesity and its complications, including type 2 diabetes. We genotyped a set of 71 single nucleotide polymorphisms (SNPs) that capture the most common variation in NPY, PPY, PYY, NPY1R, NPY2R, and NPY5R in 2,800 individuals of recent European ancestry drawn from the near extremes of BMI distribution. Five SNPs located upstream of NPY2R were nominally associated with BMI in men (P values = 0.001-0.009, odds ratios [ORs] 1.27-1.34). No association with BMI was observed in women, and no consistent associations were observed for other genes in this pathway. We attempted to replicate the association with BMI in 2,500 men and tested these SNPs for association with type 2 diabetes in 8,000 samples. We observed association with BMI in men in only one replica- tion sample and saw no association in the combined replication samples (P = 0.154, OR = 1.09). Finally, a 9% haplotype was associated with type 2 diabetes in men (P = 1.73 x 10(-4), OR = 1.36) and not in women. Variation in this pathway likely does not have a major influence on BMI, although small effects cannot be ruled out; NPY2R should be considered a candidate gene for type 2 diabetes in men.
  •  
70.
  • Cardona, Alexia, et al. (författare)
  • Epigenome-wide association study of incident type 2 diabetes in a British population : EPIC-Norfolk study
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:12, s. 2315-2326
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the populationbased European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesityrelated pathways acting before the collection of baseline samples.We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 682
Typ av publikation
tidskriftsartikel (630)
konferensbidrag (48)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (618)
övrigt vetenskapligt/konstnärligt (64)
Författare/redaktör
Groop, Leif (67)
Zierath, JR (35)
Efendic, S (32)
Arner, P (31)
Berggren, PO (27)
Tuomi, Tiinamaija (26)
visa fler...
OSTENSON, CG (25)
Lyssenko, Valeriya (25)
Korsgren, Olle (24)
Lernmark, Åke (22)
Almgren, Peter (22)
Ahren, Bo (21)
Krook, A (18)
Franks, Paul W. (18)
McCarthy, Mark I (18)
Wareham, Nicholas J. (17)
Hansen, Torben (17)
Langenberg, Claudia (16)
Franks, Paul (15)
Ryden, M (15)
Ling, Charlotte (14)
Isomaa, Bo (14)
Vaag, Allan (14)
Pedersen, Oluf (14)
Ingelsson, Erik (14)
WAHREN, J (14)
Lind, Lars (13)
Orho-Melander, Marju (13)
Eliasson, Lena (13)
Nilsson, Peter (12)
Rorsman, Patrik (12)
Orešič, Matej, 1967- (12)
Ludvigsson, Johnny (12)
Walker, Mark (12)
Laakso, Markku (11)
Salehi, S Albert (10)
Ladenvall, Claes (10)
Knowler, William C. (10)
Pedersen, O. (10)
Barroso, Ines (10)
Ahlqvist, Emma (9)
Renström, Erik (9)
Wierup, Nils (9)
Mulder, Hindrik (9)
Grill, V (9)
Jonsson, Anna (9)
Kuusisto, Johanna (9)
Scott, Robert A (9)
Wallberg-Henriksson, ... (9)
Toppari, Jorma (9)
visa färre...
Lärosäte
Karolinska Institutet (312)
Lunds universitet (207)
Uppsala universitet (134)
Göteborgs universitet (70)
Umeå universitet (51)
Linköpings universitet (26)
visa fler...
Örebro universitet (23)
Stockholms universitet (10)
Chalmers tekniska högskola (5)
Kungliga Tekniska Högskolan (2)
Gymnastik- och idrottshögskolan (2)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Högskolan Dalarna (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (680)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (351)
Naturvetenskap (5)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy