SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 8901 OR L773:1365 2664 "

Sökning: L773:0021 8901 OR L773:1365 2664

  • Resultat 21-30 av 225
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Piton, Gabin, et al. (författare)
  • Resistance–recovery trade-off of soil microbial communities under altered rain regimes : An experimental test across European agroecosystems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:2, s. 406-418
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increased occurrence of climate extremes, there is an urgent need to better understand how management strategies affect the capacity of the soil microbial community to maintain its ecosystem functions (e.g. nutrient cycling). To address this issue, intact monoliths were extracted from conventional and ecological managed grasslands in three countries across Europe and exposed under common air condition (temperature and moisture) to one of three altered rain regimes (dry, wet and intermittent wet/dry) as compared to a normal regime. Subsequently, we compared the resistance and recovery of the soil microbial biomass, potential enzyme activities and community composition. The microbial community composition differed with soil management and rain regimes. Soil microbial biomass increased from the wetter to the dryer rain regime, paralleling an increase of available carbon and nutrients, suggesting low sensitivity to soil moisture reduction but nutritional limitations of soil microbes. Conversely, enzyme activities decreased with all altered rain regimes. Resistance and recovery (considering absolute distance between normal and altered rain regime) of the microbial communities depended on soil management. Conventional-intensive management showed higher resistance of two fundamental properties for nutrient cycling (i.e. bacterial biomass and extracellular enzyme activities) yet associated with more important changes in microbial community composition. This suggests an internal community reorganization promoting biomass and activity resistance. Conversely, under ecological management bacterial biomass and enzyme activities showed better recovery capacity, whereas no or very low recovery of these properties was observed under conventional management. These management effects were consistent across the three altered rain regimes investigated, indicating common factors controlling microbial communities’ response to different climate-related stresses. Synthesis and applications. Our study provides experimental evidence for an important trade-off for agroecosystem management between (a) stabilizing nutrient cycling potential during an altered rain regime period at the expense of very low recovery capacity and potential long-term effect (conventional sites) and (b) promoting the capacity of the microbial community to recover its functional potential after the end of the stress (ecological sites). Thus, management based on ecologically sound principles may be the best option to sustain long-term soil functioning under climate change.
  •  
22.
  • Rabow, Sandra, et al. (författare)
  • Can heavy metal pollution induce soil bacterial community resistance to antibiotics in boreal forests?
  • 2023
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 60:2, s. 237-250
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of microbial antibiotic resistance is a central threat to global health, food security, and development. It has been shown that heavy metal pollution can give rise to microbial resistance to antibiotics, but how wide-spread this phenomenon is remains an open question that urgently needs filling to enable appropriate environmental risk assessments. Here, we determined whether long-term differences in heavy metal pollution in boreal forests had affected soil microbial communities such that they had increased microbial resistance to antibiotics. First, we assessed variation in metal concentrations in samples collected across a distance trajectory from the pollution source, and also the microbial rates and levels of bacterial community resistance to the heavy metal Cu and the antibiotics tetracycline and vancomycin in those samples. Second, we tested if the exposure to Cu or tetracycline could increase bacterial community resistance to Cu and to antibiotics in soils with high versus low background levels of metal contamination. Metal pollution had affected microbial community structures and suppressed decomposer functioning. Importantly, bacterial community Cu resistance increased with higher metal concentrations, which coincided with an induced bacterial community resistance to tetracycline, but not to vancomycin. Laboratory experiments revealed that bacterial community Cu resistance could be further induced in both the low and high end of the pollution gradient, but also that these short-term inductions of community metal tolerance did not coincide with enhanced antibiotic resistance. This yielded a surprising negative correlation between long-term and short-term effects by metals on microbial metal and antibiotic resistances. One mechanism that could provide protection against both metal cations and tetracycline is the small multidrug resistance (SMR) family, which is an energy demanding physiological mechanism that may take time to confer protection. This may explain the different microbial responses to long-term gradients and metal addition experiments. Policy implications. We show that metal pollution in boreal forests will promote soil bacterial antibiotic resistance, revealing a so far unrecognized reservoir of microbial antibiotic resistance. We recommend that environmental risk assessments for any activity giving rise to increased soil metal concentrations need to also consider the induction of microbial antibiotic resistance.
  •  
23.
  • Riggi, Laura, et al. (författare)
  • Early-season mass-flowering crop cover dilutes wild bee abundance and species richness in temperate regions : A quantitative synthesis
  • 2024
  • Ingår i: Journal of Applied Ecology. - 0021-8901 .- 1365-2664. ; 61:3, s. 452-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators benefit from increasing floral resources in agricultural landscapes, which could be an underexplored co-benefit of mass-flowering crop cultivation. However, the impacts of mass-flowering crops on pollinator communities are complex and appear to be context-dependent, mediated by factors such as crop flowering time and the availability of other flower resources in the landscape. A synthesis of research is needed to develop management recommendations for effective pollinator conservation in agroecosystems. By combining 22 datasets from 13 publications conducted in nine temperate countries (20 European, 2 North American), we investigated if mass-flowering crop flowering time (early or late season), bloom state (during or after crop flowering) and extent of non-crop habitat cover in the landscape moderated the effect of mass-flowering crop cover on wild pollinator abundance and species richness in mass-flowering crop and non-crop habitats. During bloom, wild bee abundance and richness are negatively related to mass-flowering crop cover. Dilution effects were predominant in crop habitats and early in the season, except for bumblebees, which declined with mass-flowering crop cover irrespective of habitat or season. Late in the season and in non-crop habitats, several of these negative relationships were either absent or reversed. Late-season mass-flowering crop cover is positively related to honeybee abundance in crop habitats and to other bee abundance in non-crop habitats. These results indicate that crop-adapted species, like honeybees, move to forage and concentrate on late-season mass-flowering crops at a time when flower availability in the landscape is limited, potentially alleviating competition for flower resources in non-crop habitats. We found no evidence of pollinators moving from mass-flowering crop to non-crop habitats after crop bloom. Synthesis and applications: Our results confirm that increasing early-season mass-flowering crop cover dilutes wild pollinators in crop habitats during bloom. We find that dilution effects were absent late in the season. While mass-flowering crop cultivation alone is unlikely to be sufficient for maintaining pollinators, as part of carefully designed diverse crop rotations or mixtures combined with the preservation of permanent non-crop habitats, it might provide valuable supplementary food resources for pollinators in temperate agroecosystems, particularly later in the season when alternative flower resources are scarce.
  •  
24.
  • Rundlöf, Maj, et al. (författare)
  • Flower plantings support wild bee reproduction and may also mitigate pesticide exposure effects
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59:8, s. 2117-2127
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable agriculture relies on pollinators, and wild bees benefit yield of multiple crops. However, the combined exposure to pesticides and loss of flower resources, driven by agricultural intensification, contribute to declining diversity and abundance of many bee taxa. Flower plantings along the margins of agricultural fields offer diverse food resources not directly treated with pesticides. To investigate the potential of flower plantings to mitigate bee pesticide exposure effects and support bee reproduction, we selected replicated sites in intensively farmed landscapes where half contained flower plantings. We assessed solitary bee Osmia lignaria and bumble bee Bombus vosnesenskii nesting and reproduction throughout the season in these landscapes. We also quantified local and landscape flower resources and used bee-collected pollen to determine forage resource use and pesticide exposure and risk. Flower plantings, and their local flower resources, increased O. lignaria nesting probability. Bombus vosnesenskii reproduction was more strongly related to landscape than local flower resources. Bees at sites with and without flower plantings experienced similar pesticide risk, and the local flowers, alongside flowers in the landscape, were sources of pesticide exposure particularly for O. lignaria. However, local flower resources mitigated negative pesticide effects on B. vosnesenskii reproduction. Synthesis and applications. Bees in agricultural landscapes are threatened by pesticide exposure and loss of flower resources through agricultural intensification. Therefore, finding solutions to mitigate negative effects of pesticide use and flower deficiency is urgent. Our findings point towards flower plantings as a potential solution to support bee populations by mitigating pesticide exposure effects and providing key forage. Further investigation of the balance between forage benefits and added pesticide risk is needed to reveal contexts where net benefits occur.
  •  
25.
  • Sidemo-Holm, William, et al. (författare)
  • Reduced crop density increases floral resources to pollinators without affecting crop yield in organic and conventional fields
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:7, s. 1421-1430
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective weed control in agricultural crop fields increases yields, but simultaneously reduces floral resources for pollinators because many weed species provide pollen and nectar. Consequently, efforts to enhance crop yields on organic farms by using effective weed control methods risk compromising positive effects of organic farming on pollinating insects. Thus, it is important to find management strategies that alleviate the trade-off between crop yields and flowering weeds on organic farms. We investigated the relationship between cereal yields, flowering weeds and bumblebees on organic and conventional arable land. We also investigated the potential of adjusting crop sowing density to benefit flowering weed species richness and floral resources to bumblebees without affecting crop yield. Floral resources and species richness of flowering weeds were higher in organic compared to conventional fields and were negatively related to crop yield in organic but not conventional fields (where the variation of floral resources and flowering weed species richness was comparatively low). Bumblebee species richness was higher in organic compared to conventional fields, and abundance was twice as high in organic as in conventional fields, but not significantly so. Yields in organic fields were two thirds of those in conventional fields. When simultaneously testing the effect of farming type (organic vs. conventional), crop yield and floral resources, only floral resources were related significantly to bumblebee abundance and species richness. A lower sowing density of the crop increased floral resources without negatively affecting crop yield. Synthesis and applications. We show that organic farming practices in cereals benefit bumblebees by allowing more flowering weeds, but at a cost in terms of lower yields. However, adjusting crop sowing density provides an opportunity to attain increased floral resources without negatively affecting crop yields. Thus, by increasing floral resources, adjusting crop sowing density may contribute to supporting high bumblebee densities, which in turn sustain pollination services to wild plants and insect-pollinated crops, such as oilseed rape and field beans, in agricultural landscapes. We suggest that sowing strategies have the potential to contribute to ecological intensification by supporting organisms that provide ecosystem services to agriculture.
  •  
26.
  • Vahter, Tanel, et al. (författare)
  • Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:9, s. 1741-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Grasslands are among the most threatened terrestrial biomes, and habitat conservation alone will be insufficient to meet biodiversity goals. While restoration of indigenous grasslands is a priority, conflict with economic objectives means that incorporation of alternative habitats is necessary to offset grassland loss. With up to 800,000 km2 of land affected by mining globally, there is an opportunity to create additional grassland habitat in post-mining landscapes. We aimed to assess whether co-introduction of native arbuscular mycorrhizal (AM) fungi and plants is an efficient means of initializing species-rich vegetation recovery in barren post-mining landscapes. We established an experiment in three post-mining areas in Estonia, where we seeded plots with native plant seeds and inoculated them with trap-cultured native AM fungi from a similar habitat. We measured the abundance and composition of soil AM fungal and above-ground plant communities in two consecutive years using relevés, high-throughput sequencing and fatty acid profiling. Our results demonstrate that co-introduction of native plants and AM fungi is an effective way to establish species-rich vegetation in post-mining areas. Co-introduction of symbiotic partners resulted in higher richness, diversity and abundance of plants and AM fungi than when either partner was introduced individually. However, the plant and AM fungal communities in sown and inoculated plots were not distinct from those in uninoculated treatments; they rather formed a subset of all taxa present on the sites but exhibited higher diversity than in uninoculated plots. Synthesis and applications. This study shows that managing the below-ground microbiome is an essential part of vegetation restoration. The availability of symbiotic partners can be considered a key aspect determining the diversity of restored vegetation. Targeted inoculations with native and habitat-specific native arbuscular mycorrhizal fungi could therefore increase restoration success.
  •  
27.
  • Andren, Henrik (författare)
  • Quantifying the checks and balances of collaborative governance systems for adaptive carnivore management
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59, s. 1038-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • Recovering or threatened carnivore populations are often harvested to minimise their impact on human activities, such as livestock farming or game hunting. Increasingly, harvest quota decisions involve a set of scientific, administrative and political institutions operating at national and sub-national levels whose interactions and collective decision-making aim to increase the legitimacy of management and ensure population targets are met. In practice, however, assessments of how quota decisions change between these different actors and what consequences these changes have on population trends are rare. We combine a state-space population modelling approach with an analysis of quota decisions taken at both regional and national levels between 2007 and 2018 to build a set of decision-making models that together predict annual harvest quota values for Eurasian lynx (Lynx lynx) in Norway. We reveal a tendency for administrative decision-makers to compensate for consistent quota increases by political actors, particularly when the lynx population size estimate is above the regional target. Using population forecasts based on the ensemble of decision-making models, we show that such buffering of political biases ensures lynx population size remains close to regional and national targets in the long term. Our results go beyond the usual qualitative assessment of collaborative governance systems for carnivore management, revealing a system of checks and balances that, in the case of lynx in Norway, ensures both multi-stakeholder participation and sustainable harvest quotas. Nevertheless, we highlight important inter-regional differences in decision-making and population forecasts, the socio-ecological drivers of which need to be better understood to prevent future population declines. Synthesis and applications. Our work analyses the sequence of decisions leading to yearly quotas for lynx harvest in Norway, highlighting the collaborative and structural processes that together shape harvest sustainability. In doing so, we provide a predictive framework to evaluate participatory decision-making processes in wildlife management, paving the way for scientists and decision-makers to collaborate more widely in identifying where decision biases might lie and how institutional arrangements can be optimised to minimise them. We emphasise, however, that this is only possible if wildlife management decisions are documented and transparent.
  •  
28.
  • Baeten, Lander, et al. (författare)
  • Identifying the tree species compositions that maximize ecosystem functioning in European forests
  • 2019
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:3, s. 733-744
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se.2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the "best" and "worst" species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories.3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity.4. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade-off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.
  •  
29.
  • Brunet, Jörg, et al. (författare)
  • Immigration credit of temperate forest herbs in fragmented landscapes—Implications for restoration of habitat connectivity
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2195-2206
  • Tidskriftsartikel (refereegranskat)abstract
    • In many agricultural landscapes, it is important to restore networks of forests to provide habitat and stepping stones for forest specialist taxa. More knowledge is, however, needed on how to facilitate the immigration of such taxa in restored forest patches. Here, we present the first chronosequence study to quantify the dynamics of immigration credits of forest specialist plants in post-arable forest patches.We studied the distribution of herbaceous forest specialist plant species in 54 post-arable broadleaved forest patches along gradients of age (20–140 years since forest establishment), distance from ancient forest (0–2,600 m) and patch area (0.5–9.6 ha). With linear mixed models, we estimated the effects of these factors on species richness, patch means of four dispersal-related plant traits and with generalized linear models on the occurrence of 20 individual species.Post-arable forest patch age and spatial isolation from ancient forest, but not patch size, were important predictors for species richness of forest specialists, suggesting that also small patches are valuable for habitat connectivity. Compared to species richness in ancient forest stands, the immigration credit was reduced by more than 90% after 80 years in post-arable forest patches contiguous to ancient forest compared to 40% after 80 years and 60% after 140 years in isolated patches (at least 100 m to next forest). Tall-growing species with adaptations to long-distance dispersal were faster colonizers, whereas species with heavy diaspores and clonal growth were slower to colonize.Synthesis and applications. We show that post-arable oak plantations have a high potential for restoration of forest herb vegetation. Dispersal-related plant traits play a key role in explaining interspecific differences among forest specialists. To facilitate forest herb immigration across all functional groups in agricultural landscapes, we suggest to create clusters of relatively small new forest patches nearby older forest with source populations.
  •  
30.
  • Daouti, Eirini Lamprini, et al. (författare)
  • Seed predation is key to preventing population growth of the weed Alopecurus myosuroides
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59, s. 471-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Seed predation can reduce the abundance and spread of unwanted vegetation in agricultural and other semi-natural ecosystems. However, knowledge of how variations in seed predation rates affect plant species population dynamics is needed for decision making and knowledge-based ecosystem management. We developed a stage-classified stochastic matrix population model for Alopecurus myosuroides Huds. (blackgrass), an annual plant species thriving as a weed in temperate agroecosystems of Western and Northern Europe. The model was parameterised using empirical demographic data from long-term experiments in Swedish winter wheat fields, including information on post-dispersal seed losses by vertebrate and invertebrate seed predators. For agroecosystems with highly effective weed control measures (e.g. chemical and mechanical weed control), model simulations showed that seed losses via seed predation need to reach at least 78% at peak seed shedding to suppress population growth of A. myosuroides. The field experiment showed that vertebrates were most important for seed predation in July, at peak seed shedding. In August, after crop harvest, invertebrates were responsible for almost all seed predation. The model indicated that weed seed predation was much more important for weed regulation when it occurred before crop harvest in July. Vertebrates most strongly reduced population growth of A. myosuroides, although both vertebrates and invertebrates were needed to prevent it entirely. Synthesis and applications. We showed that weed seed predation by vertebrate and invertebrate seed predators is key for reducing the population growth of winter annual weeds like A. myosuroides in intensively managed agroecosystems. Therefore, protection of weed seed predators is essential for making management of unwanted vegetation less dependent on chemical and mechanical measures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 225
Typ av publikation
tidskriftsartikel (208)
forskningsöversikt (16)
annan publikation (1)
Typ av innehåll
refereegranskat (223)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Rundlöf, Maj (11)
Pärt, Tomas (10)
Bommarco, Riccardo (9)
Öckinger, Erik (8)
Nilsson, Christer (7)
Smith, Henrik G. (6)
visa fler...
Clough, Yann (6)
Angeler, David (6)
Hylander, Kristoffer (5)
Gustafsson, Lena (5)
Cousins, Sara A. O. (4)
Verheyen, Kris (4)
Bergström, Ulf (4)
Jonsson, Bengt-Gunna ... (3)
Carrié, Romain (3)
Brunet, Jörg (3)
Olsson, Jens (3)
Birkhofer, Klaus (3)
Riggi, Laura (3)
Bengtsson, Jan (3)
Ranius, Thomas (3)
Berg, Åke (3)
Östman, Örjan (3)
Tack, Ayco J. M. (2)
Ekroos, Johan (2)
Ruete, Alejandro (2)
Roslin, Tomas (2)
De Frenne, Pieter (2)
Diekmann, Martin (2)
Stenlid, Jan (2)
Auffret, Alistair G. (2)
Bejarano, Maria Dolo ... (2)
Merritt, David M. (2)
Miller, Kirsten (2)
Tamburini, Giovanni (2)
Rusch, Adrien (2)
Aguilera Nuñez, Guil ... (2)
Hiron, Matthew (2)
Lundin, Ola (2)
Jansson, Roland, 196 ... (2)
Hambäck, Peter A. (2)
Edsman, Lennart (2)
Sundblad, Göran (2)
Prentice, Honor C (2)
Josefsson, Jonas (2)
Lindström, Åke (2)
Svensson, Sören (2)
Goedkoop, Willem (2)
Dannewitz, Johan (2)
Klatt, Björn (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (128)
Lunds universitet (48)
Stockholms universitet (26)
Umeå universitet (17)
Uppsala universitet (14)
Mittuniversitetet (5)
visa fler...
Linnéuniversitetet (5)
Karlstads universitet (4)
Göteborgs universitet (3)
Högskolan i Halmstad (3)
Linköpings universitet (2)
Luleå tekniska universitet (1)
Örebro universitet (1)
Södertörns högskola (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
Naturhistoriska riksmuseet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (224)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (201)
Lantbruksvetenskap (66)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy