SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0312 5963 "

Sökning: L773:0312 5963

  • Resultat 11-20 av 76
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Chu, Wan-Yu, et al. (författare)
  • Semi-mechanistic Modeling of Hypoxanthine, Xanthine, and Uric Acid Metabolism in Asphyxiated Neonates
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: Previously, we developed a pharmacokinetic-pharmacodynamic model of allopurinol, oxypurinol, and biomarkers, hypoxanthine, xanthine, and uric acid, in neonates with hypoxic-ischemic encephalopathy, in which high initial biomarker levels were observed suggesting an impact of hypoxia. However, the full pharmacodynamics could not be elucidated in our previous study. The current study included additional data from the ALBINO study (NCT03162653) placebo group, aiming to characterize the dynamics of hypoxanthine, xanthine, and uric acid in neonates with hypoxic-ischemic encephalopathy.Methods: Neonates from the ALBINO study who received allopurinol or placebo mannitol were included. An extended population pharmacokinetic-pharmacodynamic model was developed based on the mechanism of purine metabolism, where synthesis, salvage, and degradation via xanthine oxidoreductase pathways were described. The initial level of the biomarkers was a combination of endogenous turnover and high disease-related amounts. Model development was accomplished by nonlinear mixed-effects modeling (NONMEM®, version 7.5).Results: In total, 20 neonates treated with allopurinol and 17 neonates treated with mannitol were included in this analysis. Endogenous synthesis of the biomarkers reduced with 0.43% per hour because of precursor exhaustion. Hypoxanthine was readily salvaged or degraded to xanthine with rate constants of 0.5 1/h (95% confidence interval 0.33-0.77) and 0.2 1/h (95% confidence interval 0.09-0.31), respectively. A greater salvage was found in the allopurinol treatment group consistent with its mechanism of action. High hypoxia-induced initial levels of biomarkers were quantified, and were 1.2-fold to 2.9-fold higher in neonates with moderate-to-severe hypoxic-ischemic encephalopathy compared with those with mild hypoxic-ischemic encephalopathy. Half-maximal xanthine oxidoreductase inhibition was achieved with a combined allopurinol and oxypurinol concentration of 0.68 mg/L (95% confidence interval 0.48-0.92), suggesting full xanthine oxidoreductase inhibition during the period studied.Cconclusions: This extended pharmacokinetic-pharmacodynamic model provided an adequate description of the complex hypoxanthine, xanthine, and uric acid metabolism in neonates with hypoxic-ischemic encephalopathy, suggesting a positive allopurinol effect on these biomarkers. The impact of hypoxia on their dynamics was characterized, underlining higher hypoxia-related initial exposure with a more severe hypoxic-ischemic encephalopathy status.
  •  
12.
  •  
13.
  • Damoiseaux, David, et al. (författare)
  • Predicting Chemotherapy Distribution into Breast Milk for Breastfeeding Women Using a Population Pharmacokinetic Approach
  • 2023
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 62:7, s. 969-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectiveInformation on the distribution of chemotherapeutic drugs to breast milk is scarce, and reports are limited to small sample sizes. Anecdotal pharmacokinetic data have typically been acquired from lactating but non-breastfeeding patients who collect breast milk by means of an expression pump, which might not necessarily be representative for a breastfeeding population due to differences in milk production. Consequently, little is known about the variability of chemotherapy distribution to breast milk and the effect of milk production on the distribution of chemotherapy to breast milk. Our aim was to predict chemotherapy distribution to breast milk in a more realistic breastfeeding population and evaluate the effect of discarding breast milk on the potential chemotherapy exposure in infants.MethodsWe developed a population pharmacokinetic model that described the breast milk production and the chemotherapy distribution to breast milk of a non-breastfeeding population, linked it to plasma pharmacokinetics, and extrapolated this to a breastfeeding population.ResultsWe found that cumulative relative infant doses (RID) were higher than 10% for cyclophosphamide and doxorubicin and approximately 1% for paclitaxel. Simulations allowed us to predict the cumulative RID and its variability in the population for patients with different milk productions and the amount of breast milk that has to be discarded to reach cumulative RIDs below 1%, 0.1%, and 0.01%. Discarding 1–2, 3–6, and 0–1 days of breast milk (depending on the milk production of the patient) resulted in cumulative RID below 1% for cyclophosphamide, doxorubicin, and paclitaxel, respectively.ConclusionOur results may help clinicians to derive the optimal breast milk discarding strategy for an individual patient that wants to breastfeed during chemotherapy and minimize chemotherapy exposure in their infants.
  •  
14.
  • de Rouw, Nikki, et al. (författare)
  • Rethinking the Application of Pemetrexed for Patients with Renal Impairment : A Pharmacokinetic Analysis
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 60:5, s. 649-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Pemetrexed is used for the treatment for non-small cell lung cancer and mesothelioma. Patients with renal impairment are withheld treatment with this drug as it is unknown what dose is well tolerated in this population. Objective The purpose of our study was to investigate the pharmacokinetics (PK) of pemetrexed in patients with renal impairment. Methods A population PK analysis of pemetrexed was performed using non-linear mixed-effects modelling with phase I data obtained from the manufacturer. Additionally, the impact of renal function on pemetrexed PK was assessed with a simulation study using the developed PK model and a previously developed PK model lacking the phase I data. Results The dataset included 548 paired observations of 47 patients, with a wide range of estimated glomerular filtration rates (eGFR; 14.4-145.6 mL/min). Pemetrexed PK were best described by a three-compartment model with eGFR (calculated using the Chronic Kidney Disease-Epidemiology Collaboration [CKD-EPI] formula) as a linear covariate on renal pemetrexed clearance. Using the developed model, we found that renal clearance accounts for up to 84% (95% confidence interval 69-98%) of total pemetrexed clearance, whereas the manufacturer previously reported a 50% contribution of renal clearance. Conclusion Renal function is more important for the clearance of pemetrexed than previously thought and this should be taken into account in patients with renal impairment. Furthermore, a third compartment may contribute to prolonged exposure to pemetrexed during drug washout.
  •  
15.
  • de Vries Schultink, Aurelia H M, et al. (författare)
  • Population Pharmacokinetics of MCLA-128, a HER2/HER3 Bispecific Monoclonal Antibody, in Patients with Solid Tumors.
  • 2020
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 59:7, s. 875-884
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 receptors and is in development to overcome HER3-mediated resistance to anti-HER2 therapies. The aims of this analysis were to characterize the population pharmacokinetics of MCLA-128 in patients with various solid tumors, to evaluate patient-related factors that affect the disposition of MCLA-128, and to assess whether flat dosing is appropriate.METHODS: MCLA-128 concentration data following intravenous administration were collected in a phase I/II clinical trial. Pharmacokinetic data were analyzed using non-linear mixed-effects modeling. Different compartmental models were evaluated. Various body size parameters including body weight, body surface area, and fat-free mass were evaluated as covariates in addition to age, sex, HER2 status, and tumor burden.RESULTS: In total, 1115 serum concentration measurements were available from 116 patients. The pharmacokinetics of MCLA-128 was best described by a two-compartment model with linear and non-linear (Michaelis-Menten) clearance. Fat-free mass significantly affected the linear clearance and volume of distribution of the central compartment of MCLA-128, explaining 8.4% and 5.6% of inter-individual variability, respectively. Tumor burden significantly affected the non-linear clearance capacity. Simulations demonstrated that dosing based on body size parameters resulted in similar area under the plasma concentration-time curve for a dosing interval (AUC0-τ), maximum and trough concentrations of MCLA-128, compared to flat dosing.CONCLUSIONS: This analysis demonstrated that the pharmacokinetics of MCLA-128 exhibits similar disposition characteristics to other therapeutic monoclonal antibodies and that a flat dose of MCLA-128 in patients with various solid tumors is appropriate.
  •  
16.
  •  
17.
  • Eriksson, Bengt I., 1946, et al. (författare)
  • Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor xa inhibitors in development
  • 2009
  • Ingår i: Clin Pharmacokinet. - 0312-5963. ; 48:1, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • For the past five decades, there has been little progress in the development of oral anticoagulants, with the choices being limited to the vitamin K antagonists (VKAs). The situation is changing with the development of orally active small molecules that directly target thrombin or activated factor X (FXa). The two agents in the most advanced stages of development are dabigatran etexilate and rivaroxaban, which inhibit thrombin and FXa, respectively. Both are approved in the EU and Canada for venous thromboprophylaxis in patients undergoing elective hip- or knee-replacement surgery. Other agents in the early stages of development include several FXa inhibitors (apixaban, DU 176b, LY 517717, YM 150, betrixaban, eribaxaban [PD 0348292] and TAK 442) and one thrombin inhibitor (AZD 0837). With a predictable anticoagulant response and low potential for drug-drug interactions, these new agents can be given in fixed doses without coagulation monitoring. This renders them more convenient than VKAs. While the anticoagulant effect of the new thrombin and FXa inhibitors is similar, differences in the pharmacokinetic and pharmacodynamic parameters may influence their use in clinical practice. Here, we compare the pharmacokinetic and pharmacodynamic features of these new oral agents.
  •  
18.
  • Eriksson, Ulf G, et al. (författare)
  • Pharmacokinetics of melagatran and the effect on ex vivo coagulation time in orthopaedic surgery patients receiving subcutaneous melagatran and oral ximelagatran : a population model analysis
  • 2003
  • Ingår i: Clinical Pharmacokinetics. - 0312-5963 .- 1179-1926. ; 42:7, s. 687-701
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVE: Ximelagatran, an oral direct thrombin inhibitor, is rapidly bioconverted to melagatran, its active form. The objective of this population analysis was to characterise the pharmacokinetics of melagatran and its effect on activated partial thromboplastin time (APTT), an ex vivo measure of coagulation time, in orthopaedic surgery patients sequentially receiving subcutaneous melagatran and oral ximelagatran as prophylaxis for venous thromboembolism. To support the design of a pivotal dose-finding study, the impact of individualised dosage based on bodyweight and calculated creatinine clearance was examined. DESIGN AND METHODS: Pooled data obtained in three small dose-guiding studies were analysed. The patients received twice-daily administration, with either subcutaneous melagatran alone or a sequential regimen of subcutaneous melagatran followed by oral ximelagatran, for 8-11 days starting just before initiation of surgery. Nonlinear mixed-effects modelling was used to evaluate rich data of melagatran pharmacokinetics (3326 observations) and the pharmacodynamic effect on APTT (2319 observations) in samples from 216 patients collected in the three dose-guiding trials. The pharmacokinetic and pharmacodynamic models were validated using sparse data collected in a subgroup of 319 patients enrolled in the pivotal dose-finding trial. The impact of individualised dosage on pharmacokinetic and pharmacodynamic variability was evaluated by simulations of the pharmacokinetic-pharmacodynamic model. RESULTS: The pharmacokinetics of melagatran were well described by a one-compartment model with first-order absorption after both subcutaneous melagatran and oral ximelagatran. Melagatran clearance was correlated with renal function, assessed as calculated creatinine clearance. The median population clearance (creatinine clearance 70 mL/min) was 5.3 and 22.9 L/h for the subcutaneous and oral formulations, respectively. The bioavailability of melagatran after oral ximelagatran relative to subcutaneous melagatran was 23%. The volume of distribution was influenced by bodyweight. For a patient with a bodyweight of 75kg, the median population estimates were 15.5 and 159L for the subcutaneous and oral formulations, respectively. The relationship between APTT and melagatran plasma concentration was well described by a power function, with a steeper slope during and early after surgery but no influence by any covariates. Simulations demonstrated that individualised dosage based on creatinine clearance or bodyweight had no clinically relevant impact on the variability in melagatran pharmacokinetics or on the effect on APTT. CONCLUSIONS: The relatively low impact of individualised dosage on the pharmacokinetic and pharmacodynamic variability of melagatran supported the use of a fixed-dose regimen in the studied population of orthopaedic surgery patients, including those with mild to moderate renal impairment.
  •  
19.
  • Germovsek, Eva, et al. (författare)
  • Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance
  • 2019
  • Ingår i: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 58:1, s. 39-52
  • Forskningsöversikt (refereegranskat)abstract
    • Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies.
  •  
20.
  • Hennig, Stefanie, et al. (författare)
  • Population pharmacokinetics of itraconazole and its active metabolite hydroxy-itraconazole in paediatric cystic fibrosis and bone marrow transplant patients
  • 2006
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 45:11, s. 1099-1114
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 76

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy