SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1476 5578 srt2:(2020-2022)"

Sökning: L773:1476 5578 > (2020-2022)

  • Resultat 41-50 av 137
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Gialluisi, A, et al. (författare)
  • Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:7, s. 3004-3017
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10−6) enrichment of associations at the gene level, forLOC388780(20p13; uncharacterized gene), and forVEPH1(3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (atpT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase;p  = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63];p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45];p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30];p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96];p = 5 × 10−4), educational attainment (0.86[0.82; 0.91];p = 2 × 10−7), and intelligence (0.72[0.68; 0.76];p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
  •  
42.
  • Giannisis, Andreas, et al. (författare)
  • Brain integrity is altered by hepatic APOE ε4 in humanized-liver mice
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:8, s. 3533-3543
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer’s disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah−/−, Rag2−/−, Il2rg−/− mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.
  •  
43.
  • Guintivano, J, et al. (författare)
  • Transcriptome-wide association study for postpartum depression implicates altered B-cell activation and insulin resistance
  • 2022
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:6, s. 2858-2867
  • Tidskriftsartikel (refereegranskat)abstract
    • Postpartum depression (PPD) affects 1 in 7 women and has negative mental health consequences for both mother and child. However, the precise biological mechanisms behind the disorder are unknown. Therefore, we performed the largest transcriptome-wide association study (TWAS) for PPD (482 cases, 859 controls) to date using RNA-sequencing in whole blood and deconvoluted cell types. No transcriptional changes were observed in whole blood. B-cells showed a majority of transcriptome-wide significant results (891 transcripts representing 789 genes) with pathway analyses implicating altered B-cell activation and insulin resistance. Integration of other data types revealed cell type-specific DNA methylation loci and disease-associated eQTLs (deQTLs), but not hormones/neuropeptides (estradiol, progesterone, oxytocin, BDNF), serve as regulators for part of the transcriptional differences between cases and controls. Further, deQTLs were enriched for several brain region-specific eQTLs, but no overlap with MDD risk loci was observed. Altogether, our results constitute a convergence of evidence for pathways most affected in PPD with data across different biological mechanisms.
  •  
44.
  • Göteson, Andreas, 1991, et al. (författare)
  • Cerebrospinal fluid proteomics targeted for central nervous system processes in bipolar disorder
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 7446-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The etiopathology of bipolar disorder is largely unknown. We collected cerebrospinal fluid (CSF) samples from two independent case-control cohorts (total n = 351) to identify proteins associated with bipolar disorder. A panel of 92 proteins targeted towards central nervous system processes identified two proteins that replicated across the cohorts: the CSF concentrations of testican-1 were lower, and the CSF concentrations of C-type lectin domain family 1 member B (CLEC1B) were higher, in cases than controls. In a restricted subgroup analysis, we compared only bipolar type 1 with controls and identified two additional proteins that replicated in both cohorts: draxin and tumor necrosis factor receptor superfamily member 21 (TNFRSF21), both lower in cases than controls. This analysis additionally revealed several proteins significantly associated with bipolar type 1 in one cohort, falling just short of replicated statistical significance in the other (tenascin-R, disintegrin and metalloproteinase domain-containing protein 23, cell adhesion molecule 3, RGM domain family member B, plexin-B1, and brorin). Next, we conducted genome-wide association analyses of the case-control-associated proteins. In these analyses, we found associations with the voltage-gated calcium channel subunit CACNG4, and the lipid-droplet-associated gene PLIN5 with CSF concentrations of TNFRSF21 and CLEC1B, respectively. The reported proteins are involved in neuronal cell-cell and cell-matrix interactions, particularly in the developing brain, and in pathways of importance for lithium's mechanism of action. In summary, we report four novel CSF protein associations with bipolar disorder that replicated in two independent case-control cohorts, shedding new light on the central nervous system processes implicated in bipolar disorder.
  •  
45.
  •  
46.
  • Hampel, H., et al. (författare)
  • The Amyloid-beta Pathway in Alzheimer's Disease
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5481-5503
  • Tidskriftsartikel (refereegranskat)abstract
    • Breakthroughs in molecular medicine have positioned the amyloid-beta (A beta) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the A beta cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of A beta science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of A beta pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct A beta species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for A beta-targeting therapeutic strategies in development for the early treatment of AD.
  •  
47.
  •  
48.
  • Hjorth, Olof, et al. (författare)
  • Expression and co-expression of serotonin and dopamine transporters in social anxiety disorder : a multitracer positron emission tomography study
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:8, s. 3970-3979
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonin and dopamine are putatively involved in the etiology and treatment of anxiety disorders, but positron emission tomography (PET) studies probing the two neurotransmitters in the same individuals are lacking. The aim of this multitracer PET study was to evaluate the regional expression and co-expression of the transporter proteins for serotonin (SERT) and dopamine (DAT) in patients with social anxiety disorder (SAD). Voxel-wise binding potentials (BPND) for SERT and DAT were determined in 27 patients with SAD and 43 age- and sex-matched healthy controls, using the radioligands [11C]DASB (3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile) and [11C]PE2I (N-(3-iodopro-2E-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)nortropane). Results showed that, within transmitter systems, SAD patients exhibited higher SERT binding in the nucleus accumbens while DAT availability in the amygdala, hippocampus, and putamen correlated positively with symptom severity. At a more lenient statistical threshold, SERT and DAT BPND were also higher in other striatal and limbic regions in patients, and correlated with symptom severity, whereas no brain region showed higher binding in healthy controls. Moreover, SERT/DAT co-expression was significantly higher in SAD patients in the amygdala, nucleus accumbens, caudate, putamen, and posterior ventral thalamus, while lower co-expression was noted in the dorsomedial thalamus. Follow-up logistic regression analysis confirmed that SAD diagnosis was significantly predicted by the statistical interaction between SERT and DAT availability, in the amygdala, putamen, and dorsomedial thalamus. Thus, SAD was associated with mainly increased expression and co-expression of the transporters for serotonin and dopamine in fear and reward-related brain regions. Resultant monoamine dysregulation may underlie SAD symptomatology and constitute a target for treatment.
  •  
49.
  • Huckins, LM, et al. (författare)
  • What next for eating disorder genetics? Replacing myths with facts to sharpen our understanding
  • 2022
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:10, s. 3929-3938
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial progress has been made in the understanding of anorexia nervosa (AN) and eating disorder (ED) genetics through the efforts of large-scale collaborative consortia, yielding the first genome-wide significant loci, AN-associated genes, and insights into metabo-psychiatric underpinnings of the disorders. However, the translatability, generalizability, and reach of these insights are hampered by an overly narrow focus in our research. In particular, stereotypes, myths, assumptions and misconceptions have resulted in incomplete or incorrect understandings of ED presentations and trajectories, and exclusion of certain patient groups from our studies. In this review, we aim to counteract these historical imbalances. Taking as our starting point the Academy for Eating Disorders (AED) Truth #5 “Eating disorders affect people of all genders, ages, races, ethnicities, body shapes and weights, sexual orientations, and socioeconomic statuses”, we discuss what we do and do not know about the genetic underpinnings of EDs among people in each of these groups, and suggest strategies to design more inclusive studies. In the second half of our review, we outline broad strategic goals whereby ED researchers can expand the diversity, insights, and clinical translatability of their studies.
  •  
50.
  • Isgren, Anniella, et al. (författare)
  • Cerebrospinal fluid proteomic study of two bipolar disorder cohorts
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:11, s. 4568-4574
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathophysiology of bipolar disorder remains to be elucidated and there are no diagnostic or prognostic biomarkers for the condition. In this explorative proteomic study, we analyzed 201 proteins in cerebrospinal fluid (CSF) from mood stable bipolar disorder patients and control subjects sampled from two independent cohorts, amounting to a total of 204 patients and 144 controls. We used three Olink Multiplex panels, whereof one specifically targets immune biomarkers, to assess a broad set of CSF protein concentrations. After quality control and removal of proteins with a low detection rate, 105 proteins remained for analyses in relation to case-control status and clinical variables. Only case-control differences that replicated across cohorts were considered. Results adjusted for potential confounders showed that CSF concentrations of growth hormone were lower in bipolar disorder compared with controls in both cohorts. The effect size was larger when the analysis was restricted to bipolar disorder type 1 and controls. We found no indications of immune activation or other aberrations. Growth hormone exerts many effects in the central nervous system and our findings suggest that growth hormone might be implicated in the pathophysiology of bipolar disorder.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 137

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy