SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1553 7366 OR L773:1553 7374 "

Sökning: L773:1553 7366 OR L773:1553 7374

  • Resultat 61-70 av 247
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  •  
62.
  • Kanatani, Sachie, et al. (författare)
  • Voltage-dependent calcium channel signaling mediates GABA(A) receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii
  • 2017
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon T. gondii-infection,. Upsilon-aminobutyric acid (GABA)/GABAA receptor signaling triggers a hypermigratory phenotype in dendritic cells (DCs) by unknown signal transduction pathways. Here, we demonstrate that calcium (Ca2+) signaling in DCs is indispensable for T. gondii-induced DC hypermotility and transmigration in vitro. We report that activation of GABAA receptors by GABA induces transient Ca2+ entry in DCs. Murine bone marrow-derived DCs preferentially expressed the L-type voltage-dependent Ca2+ channel (VDCC) subtype Cav1.3. Silencing of Cav1.3 by short hairpin RNA or selective pharmacological antagonism of VDCCs abolished the Toxoplasma-induced hypermigratory phenotype. In a mouse model of toxoplasmosis, VDCC inhibition of adoptively transferred Toxoplasma-infected DCs delayed the appearance of cell-associated parasites in the blood circulation and reduced parasite dissemination to target organs. The present data establish that T. gondii-induced hypermigration of DCs requires signaling via VDCCs and that Ca2+ acts as a second messenger to GABAergic signaling via the VDCC Cav1.3. The findings define a novel motility-related signaling axis in DCs and unveil that interneurons and DCs share common GABAergic motogenic pathways. T. gondii employs GABAergic non-canonical pathways to induce host cell migration and facilitate dissemination.
  •  
63.
  • Khandige, Surabhi, et al. (författare)
  • sRNA-Mediated Regulation of P-Fimbriae Phase Variation in Uropathogenic Escherichia coli
  • 2015
  • Ingår i: PLoS Pathogens. - : PLOS. - 1553-7366 .- 1553-7374. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Uropathogenic Escherichia coli (UPEC) are capable of occupying physiologically distinct intracellular and extracellular niches within the urinary tract. This feat requires the timely regulation of gene expression and small RNAs (sRNAs) are known to mediate such rapid adjustments in response to changing environmental cues. This study aimed to uncover sRNA-mediated gene regulation in the UPEC strain UTI89, during infection of bladder epithelial cells. Hfq is an RNA chaperone known to facilitate and stabilize sRNA and target mRNA interactions with bacterial cells. The co-immunoprecipitation and high throughput RNA sequencing of Hfq bound sRNAs performed in this study, revealed distinct sRNA profiles in UPEC in the extracellular and intracellular environments. Our findings emphasize the importance of studying regulatory sRNAs in a biologically relevant niche. This strategy also led to the discovery of a novel virulence-associated trans-acting sRNA-PapR. Deletion of papR was found to enhance adhesion of UTI89 to both bladder and kidney cell lines in a manner independent of type-1 fimbriae. We demonstrate PapR mediated post-transcriptional repression of the P-fimbriae phase regulator gene papI and postulate a role for such regulation in fimbrial cross-talk at the population level in UPEC. Our results further implicate the Leucine responsive protein (LRP) as a transcriptional activator regulating PapR expression. Our study reports, for the first time, a role for sRNAs in regulation of P-fimbriae phase variation and emphasizes the importance of studying pathogenesis-specific sRNAs within a relevant biological niche.
  •  
64.
  • Kirjavainen, Vesa, et al. (författare)
  • Yersinia enterocolitica serum resistance proteins YadA and Ail bind the complement regulator C4b-binding protein
  • 2008
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 4:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.
  •  
65.
  • Knödlseder, Nastassia, et al. (författare)
  • Engineering selectivity of Cutibacterium acnes phages by epigenetic imprinting
  • 2022
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restrictionmodification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.
  •  
66.
  • Kusmierek, Maria, et al. (författare)
  • A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact
  • 2019
  • Ingår i: PLoS Pathogens. - : Public Library Science. - 1553-7366 .- 1553-7374. ; 15:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators. Secretion of the YopD translocator upon host cell contact increases the ratio of post-transcriptional regulator CsrA to its antagonistic small RNAs CsrB and CsrC and reduces the degradosome components PNPase and RNase E levels. This substantially elevates the amount of the common transcriptional activator (LcrF) of T3SS/Yop effector genes and triggers the synthesis of associated virulence-relevant traits. The observed hijacking of global riboregulators allows the pathogen to coordinate virulence factor expression and also readjusts its physiological response upon host cell contact. Author summary Many bacterial pathogens sense contact to host cells and respond by inducing expression of crucial virulence factors. This includes the type III secretion systems (T3SSs) and their substrates, which manipulate different host cell functions to promote colonization and survival of the pathogen within its host. In this study, we used enteropathogenic Yersinia pseudotuberculosis to elucidate the molecular mechanism of how cell contact is transmitted and translated to trigger this process. We found that multiple global riboregulators control the decay and/or translation of the major transcriptional activator of the T3SS. In the absence of cell contact, these important RNA regulators are coopted by one of the substrate proteins of the T3SS to repress expression of the secretion machinery. Translocation of the substrate protein upon cell contact relieves riboregulator-mediated repression. This leads to a strong induction of the master regulator of T3SS/effector gene expression promoting an increase of the virulence potential and provokes a fast adaptation of the pathogen's fitness, e.g. to compensate for the imposed energetic burden.
  •  
67.
  • Larsson, Mattias (författare)
  • Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus
  • 2011
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a highquality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.
  •  
68.
  • Latorre-Margalef, Neus, et al. (författare)
  • Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck
  • 2017
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Our overall hypothesis is that host population immunity directed at multiple antigens will influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations where the vast subtype diversity is maintained. To investigate how initial infection influences the outcome of later infections with homologous or heterologous IAV subtypes and how viruses interact through host immune responses, we carried out experimental infections in mallard ducks (Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and were divided into six groups. At five weeks post H3N8 inoculation, each group was challenged with a different IAV subtype (H4N5, H10N7, H6N2, H12N5) or the same H3N8. Two additional pre-challenged groups were inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate the duration of protection. The results showed that mallards were still resistant to re-infection after 15 weeks. There was a significant reduction in shedding for all pre-challenged groups compared to controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer after re-infection with H4N5, which is consistent with original antigenic sin or antigenic seniority and suggest a putative strategy of virus evasion. These results imply competition between related subtypes that could regulate IAV subtype population dynamics in nature. Collectively, we provide new insights into within-host IAV complex interactions as drivers of IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks.
  •  
69.
  • Latorre-Margalef, Neus, et al. (författare)
  • Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes
  • 2013
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 9:6, s. e1003443-
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV) in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA) immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02). Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04) and the level of HA groups (p-value = 0.05). In contrast, infection patterns did not support specific immunity for neuraminidase (NA) subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.
  •  
70.
  • Lenman, Annasara, et al. (författare)
  • Human Adenovirus 52 Uses Sialic Acid-containing Glycoproteins and the Coxsackie and Adenovirus Receptor for Binding to Target Cells
  • 2015
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus: glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 247
Typ av publikation
tidskriftsartikel (246)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (244)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Mörgelin, Matthias (11)
Urban, Constantin F (6)
Klingstrom, J (5)
Svanborg, Catharina (5)
Herwald, Heiko (5)
Malmsten, Martin (5)
visa fler...
Sellin, Mikael E. (5)
Deeks, SG (4)
Nilsson, Peter (4)
Schmidtchen, Artur (4)
Hedestam, GBK (4)
Billker, Oliver (4)
Gerold, Gisa, 1979- (4)
Wyatt, RT (4)
Hardt, Wolf-Dietrich (4)
Sonnerborg, A (3)
Ojala, PM (3)
Borén, Thomas (3)
Uhlin, Bernt Eric (3)
Ljunggren, HG (3)
Olsen, Björn (3)
Röhm, Marc (3)
Achour, A (3)
Sandalova, T (3)
Blom, Anna (3)
Rottenberg, ME (3)
Svensson, JP (3)
Sjöstedt, Anders (3)
Swann, JR (3)
Papareddy, Praveen (3)
Ryman, Kicki (3)
Wullt, Björn (3)
Dobrindt, Ulrich (3)
Hultmark, Dan (3)
Arnqvist, Anna (3)
Broliden, K (3)
Heroven, Ann Kathrin (3)
Dersch, Petra (3)
Lindqvist, B (3)
Stehle, Thilo (3)
Smed-Sorensen, A (3)
Shannon, Oonagh (3)
Laiho, M (3)
Barrenäs, Fredrik (3)
Law, Lynn (3)
Gale, Michael, Jr. (3)
Verdin, E (3)
Masucci, MG (3)
Norrby-Teglund, Anna (3)
Burgener, AD (3)
visa färre...
Lärosäte
Karolinska Institutet (110)
Umeå universitet (53)
Lunds universitet (43)
Uppsala universitet (38)
Göteborgs universitet (18)
Stockholms universitet (11)
visa fler...
Kungliga Tekniska Högskolan (10)
Linköpings universitet (9)
Sveriges Lantbruksuniversitet (8)
Chalmers tekniska högskola (2)
Örebro universitet (1)
Malmö universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (247)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (128)
Naturvetenskap (51)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy