SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dupuis Josee) "

Sökning: WFRF:(Dupuis Josee)

  • Resultat 11-20 av 54
  • Föregående 1[2]3456Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Gaulton, Kyle J., et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:12, s. 1415-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
12.
  • Georgakis, Marios K., et al. (författare)
  • Association of Circulating Monocyte Chemoattractant Protein-1 Levels with Cardiovascular Mortality : A Meta-analysis of Population-Based Studies
  • 2021
  • Ingår i: JAMA Cardiology. - : American Medical Association. - 2380-6583. ; 6:5, s. 587-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Human genetics and studies in experimental models support a key role of monocyte-chemoattractant protein-1 (MCP-1) in atherosclerosis. Yet, the associations of circulating MCP-1 levels with risk of coronary heart disease and cardiovascular death in the general population remain largely unexplored. Objective: To explore whether circulating levels of MCP-1 are associated with risk of incident coronary heart disease, myocardial infarction, and cardiovascular mortality in the general population. Data Sources and Selection: Population-based cohort studies, identified through a systematic review, that have examined associations of circulating MCP-1 levels with cardiovascular end points. Data Extraction and Synthesis: Using a prespecified harmonized analysis plan, study-specific summary data were obtained from Cox regression models after excluding individuals with overt cardiovascular disease at baseline. Derived hazard ratios (HRs) were synthesized using random-effects meta-analyses. Main Outcomes and Measures: Incident coronary heart disease (myocardial infarction, coronary revascularization, and unstable angina), nonfatal myocardial infarction, and cardiovascular death (from cardiac or cerebrovascular causes). Results: The meta-analysis included 7 cohort studies involving 21401 individuals (mean [SD] age, 53.7 [10.2] years; 10012 men [46.8%]). Mean (SD) follow-up was 15.3 (4.5) years (326392 person-years at risk). In models adjusting for age, sex, and race/ethnicity, higher MCP-1 levels at baseline were associated with increased risk of coronary heart disease (HR per 1-SD increment in MCP-1 levels: 1.06 [95% CI, 1.01-1.11]; P =.01), nonfatal myocardial infarction (HR, 1.07 [95% CI, 1.01-1.13]; P =.02), and cardiovascular death (HR, 1.12 [95% CI, 1.05-1.20]; P <.001). In analyses comparing MCP-1 quartiles, these associations followed dose-response patterns. After additionally adjusting for vascular risk factors, the risk estimates were attenuated, but the associations of MCP-1 levels with cardiovascular death remained statistically significant, as did the association of MCP-1 levels in the upper quartile with coronary heart disease. There was no significant heterogeneity; the results did not change in sensitivity analyses excluding events occurring in the first 5 years after MCP-1 measurement, and the risk estimates were stable after additional adjustments for circulating levels of interleukin-6 and high-sensitivity C-reactive protein. Conclusions and Relevance: Higher circulating MCP-1 levels are associated with higher long-term cardiovascular mortality in community-dwelling individuals free of overt cardiovascular disease. These findings provide further support for a key role of MCP-1-signaling in cardiovascular disease..
  •  
13.
  • Hancock, Dana B, et al. (författare)
  • Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function
  • 2012
  • Ingår i: PLoS genetics. - 1553-7404. ; 8:12, s. e1003098-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV1), and its ratio to forced vital capacity (FEV1/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV1 and FEV1/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest PJMA = 5.00×10−11), HLA-DQB1 and HLA-DQA2 (smallest PJMA = 4.35×10−9), and KCNJ2 and SOX9 (smallest PJMA = 1.28×10−8) were associated with FEV1/FVC or FEV1 in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.
  •  
14.
  • Heard-Costa, Nancy L, et al. (författare)
  • NRXN3 is a novel locus for waist circumference : a genome-wide association study from the CHARGE Consortium
  • 2009
  • Ingår i: PLoS genetics. - 1553-7404. ; 5:6, s. e1000539-
  • Tidskriftsartikel (refereegranskat)abstract
    • Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4×10−7)]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3×10−8 for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4×10−6, 0.024 z-score units (0.10 kg/m2) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07–1.19; p = 3.2×10−5 per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.
  •  
15.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797. ; 59:5, s. 1266-1275
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
16.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
17.
  • Jackson, Victoria E, et al. (författare)
  • Meta-analysis of exome array data identifies six novel genetic loci for lung function.
  • 2018
  • Ingår i: Wellcome open research. - 2398-502X. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
  •  
18.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
19.
  • Kanoni, Stavroula, et al. (författare)
  • Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant : a 14-cohort meta-analysis
  • 2011
  • Ingår i: Diabetes. - Alexandria : American diabetes association. - 0012-1797 .- 1939-327X. ; 60:9, s. 2407-2416
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants.RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes.RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant.CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.
  •  
20.
  • Kathiresan, Sekar, et al. (författare)
  • Common variants at 30 loci contribute to polygenic dyslipidemia
  • 2009
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 41:1, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 x 10(-8)), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10(-15) for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 54
  • Föregående 1[2]3456Nästa
Typ av publikation
tidskriftsartikel (51)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (54)
Författare/redaktör
Dupuis, Josée (53)
Meigs, James B. (40)
Langenberg, Claudia (36)
Wareham, Nicholas J. (35)
McCarthy, Mark I (34)
Boehnke, Michael (33)
visa fler...
Kuusisto, Johanna (30)
Laakso, Markku (30)
Mohlke, Karen L (29)
Ingelsson, Erik (29)
Prokopenko, Inga (29)
Lind, Lars (28)
Tuomilehto, Jaakko (28)
Collins, Francis S. (28)
Barroso, Ines (26)
Jackson, Anne U. (26)
Morris, Andrew P. (26)
Groop, Leif (25)
Froguel, Philippe (25)
Loos, Ruth J F (25)
Pankow, James S. (25)
Frayling, Timothy M (25)
Scott, Robert A (22)
Palmer, Colin N. A. (22)
Hofman, Albert (21)
Uitterlinden, Andre ... (21)
Hansen, Torben (21)
Lyssenko, Valeriya (20)
Salomaa, Veikko (20)
Psaty, Bruce M. (20)
Grarup, Niels (20)
Pedersen, Oluf (20)
Morris, Andrew D (20)
Zeggini, Eleftheria (20)
Lindgren, Cecilia M. (20)
Stringham, Heather M ... (20)
Bonnycastle, Lori L. (20)
Rotter, Jerome I. (19)
Deloukas, Panos (19)
Boerwinkle, Eric (19)
Tuomi, Tiinamaija (18)
Franks, Paul W. (18)
Gieger, Christian (18)
Stancáková, Alena (17)
Isomaa, Bo (17)
Hu, Frank B. (17)
Hattersley, Andrew T (17)
Balkau, Beverley (17)
Luan, Jian'an (17)
Forouhi, Nita G. (17)
visa färre...
Lärosäte
Uppsala universitet (29)
Lunds universitet (28)
Umeå universitet (14)
Karolinska Institutet (7)
Göteborgs universitet (6)
Stockholms universitet (3)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (47)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy