Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Yifeng 1984) "

Sökning: WFRF:(Fu Yifeng 1984)

Sortera/gruppera träfflistan
  • Daon, J., et al. (författare)
  • Chemically enhanced carbon nanotubes based Thermal Interface Materials
  • 2015
  • Ingår i: THERMINIC 2015 - 21st International Workshop on Thermal Investigations of ICs and Systems 2015. - 9781467397056
  • Konferensbidrag (refereegranskat)abstract
    • With progress in microelectronics the component density on a device increases drastically. As a consequence the power density reaches levels that challenge device reliability. New heat dissipation strategies are needed to efficiently drain heat. Thermal Interface Materials (TIMs) are usually used to transfer heat across interfaces, for example between a device and its packaging. Vertically Aligned Carbon Nanotubes (VACNTs) can be used to play this role. Indeed, carbon nanotubes are among the best thermal conductors (similar to 3.000 W/mK) and in the form of VACNT mats, show interesting mechanical properties. On one side, VACNTs are in contact with their growth substrate and there is a low thermal resistance. On the other side, good contact must be created between the opposite substrate and the VACNTs in order to decrease the contact thermal resistance. A thin-film deposition of an amorphous material can be used to play this role. This paper reports a chemically enhanced carbon nanotube based TIM with creation of chemical bonds between the polymer and VACNTs. We show that these covalent bonds enhance the thermal transfer from VACNTs to a copper substrate and can dramatically decrease local resistances. Implementation processes and thermal characterizations of TIMs are studied and reported.
  • Daon, J., et al. (författare)
  • Electrically conductive thermal interface materials based on vertically aligned carbon nanotubes mats
  • 2014
  • Ingår i: IEEE 20th International Workshop on Thermal Investigation of ICs and Systems (Therminic). Greenwich, London, United Kingdom, 24-26 September 2014.
  • Konferensbidrag (refereegranskat)abstract
    • In power microelectronics, the trends towards miniaturization and higher performances result in higher power densities and more heat to be dissipated. In most electronic assembly, thermal interface materials (TIM) help provide a path for heat dissipation but still represent a bottleneck in the total thermal resistance of the system. VA-CNTs mats are typically grown on HR silicon substrate with Al2O3 diffusion barrier layer using Thermal CVD process. In many cases, 'die attach' thermal interface materials need to be electrically conductive and the growth of dense VA-CNT mats on an electrically conductive substrate remains a challenge. This paper presents the growth of dense VA-CNT mats on doped silicon with Al2O3 and TiN diffusion barrier layer. Processes, thermal and electrical characterization of VA-CNTs based thermal interface materials are studied and reported.
  • Darmawan, C. C., et al. (författare)
  • Graphene-CNT hybrid material as potential thermal solution in electronics applications
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). - 9781538630556 ; , s. 190-193
  • Konferensbidrag (refereegranskat)abstract
    • Graphene and CNT have great potential in electronics applications. This work explored the possibility of integrating 1D CNT and 2D graphene into a 3D covalently bonded structure, i.e. a graphene-CNT hybrid material for thermal management application. The graphene-CNT hybrid material was later investigated morphologically and thermally to observe its heat dissipation capability.
  • Fan, X., et al. (författare)
  • Reliability of carbon nanotube bumps for chip on glass application
  • 2014
  • Ingår i: Proceedings of the 5th Electronics System-Integration Technology Conference, ESTC 2014. ; , s. Art. no. 6962753-
  • Konferensbidrag (refereegranskat)abstract
    • Carbon nanotubes (CNTs) are an ideal candidate material for electronic interconnects due to their extraordinary thermal, electrical and mechanical properties. In this study, densified CNT bumps utilizing the paper-mediated controlled method were applied as the interconnection for chip on glass (COG) applications, and the silicon chip with patterned CNT bumps was then flipped and bonded onto a glass substrate using anisotropic conductive adhesive (ACA) at a bonding pressure of 127.4 Mpa, 170°C for 8 seconds. The electrical properties of the COG were evaluated with the contact resistance of each bump measured using the four-point probe method. Three different structure traces, marked as Trace A, Trace B, and Trace C, were tested, respectively. Thermal cycling (-40 to 85°C, 800 cycles) and damp heat tests (85°C/85% RH, 1000 hours) were also conducted to evaluate the reliability of the CNT-COG structure. The average contact resistance of the samples was recorded during these tests, in which there was no obvious electrical failure observed after both the thermal cycling and damp heat tests. The results of these tests indicated that the COG has good reliability and the CNT bumps have promising potential applications in COG.
  • Fan, Yi, et al. (författare)
  • A study of fluid coolant with carbon nanotube suspension for MicroChannel coolers
  • 2008
  • Ingår i: 2008 International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2008; Pudong, Shanghai; China; 28 July 2008 through 31 July 2008.
  • Konferensbidrag (refereegranskat)abstract
    • In this work, silicon microchannel coolers were made using the Deep Ion Reactive Etching (DIRE) technique. Stable and homogeneous Carbon NanoTube (CNT) suspension was also prepared. Meanwhile, a closed-loop cooling test system was developed to investigate the heat removal of the silicon microchannel cooler with different coolants. The experimental setup included a test module, a minipump for providing controllable flow, and a fan system for cooling the circular fluid. Beside the inlet and outlet of the test module, two thermocouples and pressure gauges were set up to measure the temperature and pressure of the fluids. The heat removal of the silicon microchannel cooler using different CNT volume fraction of suspension coolant was studied. The results show that the microchannel cooler with CNT suspension as coolant could strengthen the heat removal capability of microchannel cooler. In addition to heat transfer enhancement, the microchannel cooler with CNT suspension coolant did not produce extra pressure drop in the present study.
  • Fazi, Andrea, 1992, et al. (författare)
  • Multiple growth of graphene from a pre-dissolved carbon source
  • 2020
  • Ingår i: Nanotechnology. - 1361-6528 .- 0957-4484. ; 31:34, s. 345601-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mono- to few-layer graphene materials are successfully synthesized multiple times using Cu-Ni alloy as a catalyst after a single-chemical vapor deposition (CVD) process. The multiple synthesis is realized by extracting carbon source pre-dissolved in the catalyst substrate. Firstly, graphene is grown by the CVD method on Cu-Ni catalyst substrates. Secondly, the same Cu-Nicatalyst foils are annealed, in absence of any external carbon precursor, to grow graphene using the carbon atoms pre-dissolved in the catalyst during the CVD process. This annealing process is repeated to synthesize graphene successfully until carbon is exhausted in the Cu-Ni foils. After the CVD growth and each annealing growth process, the as-grown graphene is removed using a bubbling transfer method. A wide range of characterizations are performed to examine the quality of the obtained graphene material and to monitor the carbon concentration in the catalyst substrates. Results show that graphene from each annealing growth process possesses a similar quality, which confirmed the good reproducibility of the method. This technique brings great freedom to graphene growth and applications, and it could be also used for other 2D material synthesis.
Skapa referenser, mejla, bekava och länka
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy