SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Yifeng 1984) "

Sökning: WFRF:(Fu Yifeng 1984)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Liu, Ya, 1991, et al. (författare)
  • Egg albumen templated graphene foams for high-performance supercapacitor electrodes and electrochemical sensors
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 6:37, s. 18267-18275
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a simple and scalable strategy to obtain N, S and Si co-doped biocompatible graphene foams (GFs) with different shapes using egg albumen as the template. The unique porous structure and element doping endow the GFs with a high charge-discharge rate and good wettability, which largely improve the electrochemical performance of the electrodes, including ultrahigh specific capacitance (534 F g-1at 1 A g-1), and excellent rate capability (308 F g-1at 100 A g-1) and cycling performance (96.1% retention of the initial capacitance after 10000 cycles at a high current density of 10 A g-1). Besides, when used as an electrochemical sensor for dopamine, the GF exhibits a detection limit as low as 1.2 μM with a linear response up to 70 μM, due to the low equivalent series resistance. These reveal great potential for promoting the application of 3D graphene in energy storage and electrochemical sensors.
  •  
62.
  • Liu, Ya, 1991, et al. (författare)
  • Graphene based thermal management system for battery cooling in electric vehicles
  • 2020
  • Ingår i: 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). - 9781728162928
  • Konferensbidrag (refereegranskat)abstract
    • In this work, a graphene assembled film integrated heat sink and water cooling technology was used to build an experimental set-up of a thermal management system to demonstrate the possibility to achieve efficient cooling of the propulsion battery in electric vehicles. The experimental results showed that the temperature decrease of a Li-ion battery module can reach 11°C and 9 °C under discharge rates as of 2C and 1C, respectively. The calculated thermal resistance of the graphene based cooling system is about 76% of a similar copper based cooling system. Surface modification was carried out on the graphene sheet to achieve a reliable bonding between the graphene sheet and the battery cell surface. This work provides a proof of concept of a new highly efficient approach for electric vehicle battery thermal management using the light-weight material graphene.
  •  
63.
  • Mehta, Ankit Nalin, et al. (författare)
  • Understanding noninvasive charge transfer doping of graphene: a comparative study
  • 2018
  • Ingår i: Journal of Materials Science: Materials in Electronics. - 1573-482X .- 0957-4522. ; 29:7, s. 5239-5252
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we systematically investigate and compare noninvasive doping of chemical vapor deposition graphene with three molecule dopants through spectroscopy and electrical conductivity techniques. Thionyl chloride shows the smallest improvement in conductivity with poor temporal and thermal stability and nitric acid induces the biggest sheet resistance reduction with modified stability. Molybdenum trioxide doping stands out, after thermal annealing, with both causing a significant sheet-resistance reduction and having superior temporal and thermal stability. These properties make it ideal for applications in advanced electronics. Theoretical studies based on the van der Waals density functional method suggest that cluster formation of molybdenum trioxide underpins the significant reduction in sheet resistance, and the stability, that arises after thermal annealing. Our comparative study clarifies charge transfer doping of graphene and brings understanding of the weak-interaction nature of such non-destructive doping of graphene. Our work also shows that we can use weak chemisorption to tailor the electronic properties of graphene, for example, to improve conductivity. This ability open up possibilities for further use of graphene in electronic interconnects, field effect transistors and other systems.
  •  
64.
  • Mu, Wei, 1985, et al. (författare)
  • Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor
  • 2016
  • Ingår i: Chemical Engineering Journal. - 1385-8947. ; 304:15 November 2016, s. 106-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Bilayer graphene is attractive for digital device applications due to the appearance of a bandgap under application of an electrical displacement field. Controllable and fast synthesis of bilayer graphene on copper by chemical vapor deposition is considered a crucial process from the perspective of industrial applications. Here, a systematic investigation of the influence of process parameters on the growth of bilayer graphene by chemical vapor deposition in a low pressure cold wall reactor is presented. In this study, the initial process stages have been of particular interest. We have found that the influence of the hydrogen partial pressure on synthesis is completely the opposite from that found for traditional tubular quartz CVD in terms of its influence on the graphene growth rate. H2/CH4 ratio was also found to effectively influence the properties of the synthesized bilayer graphene in terms of its atomic structure, whether it be AB-stacked or misoriented. Different pre-treatments of the copper foil, in combination with different annealing processes, were used to investigate the nucleation process with the aim of improving the controllability of the synthesis process. Based on an analysis of the nucleation activity, adsorption-diffusion and gas-phase penetration were employed to illustrate the synthesis mechanism of bilayer graphene on copper foil. After optimization of the synthesis process, large areas, up to 90% of a copper foil, were covered by bilayer graphene within 15 minutes. The total process time is only 45 minutes, including temperature ramp-up and cool-down by using a low pressure cold wall CVD reactor.
  •  
65.
  • Mu, Wei, 1985, et al. (författare)
  • Double-Densified VerticallyAligned Carbon Nanotube Bundles for Application in 3D Integration High Aspect Ratio TSV Interconnects
  • 2016
  • Ingår i: 66th IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, USA, May 31-Jun 03, 2016. - 0569-5503. ; , s. 211-216
  • Konferensbidrag (refereegranskat)abstract
    • The treatment of densification by vapor on pristineMWCNT bundles are necessary to improve the effective area of the CNT TSV. However, the CNT bundles might tilt partly because of the non-uniform densification at root of the bundle, especially when it comes to the high aspect ratio CNT bundles. In order to solve these problems, a double densification process has been proposed and developed here. First of all, the shape of partial densified CNT bundles were optimized as a function of time. After several steps such as transferring of partial densified CNT bundles into the via, second densification, epoxy filling and chemical mechanical polishing, the CNT filled TSV with aspect ratio of 10 was achieved. The current voltage response of the CNT TSV interconnection indicated good electrical connection was formed. The resistivity of CNT bundles in via was calculated to be around 2-3 milli-ohmcm.
  •  
66.
  • Mu, Wei, 1985, et al. (författare)
  • Enhanced Cold Wall CVD Reactor Growth of Horizontally Aligned Single-walled Carbon Nanotubes
  • 2016
  • Ingår i: Electronic Materials Letters. - 1738-8090. ; 12:3, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT’s growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1-2 tubes/μm with high growth quality as shown by Raman analysis.
  •  
67.
  • Mu, Wei, 1985, et al. (författare)
  • Large area and uniform monolayer graphene CVD growth on oxidized copper in a cold wall reactor
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings.
  • Konferensbidrag (refereegranskat)abstract
    • Graphene growth on copper in cold wall chemical vapor deposition (CVD) is not an inherently self- limiting process, which means that adlayers appear as long as there is sufficient growth time. The growth of large area and uniform monolayer becomes crucial and imminent. In this study, the pre-Treatment of oxidation was employed on copper. The results have shown that oxidation pre-Treatment in combination with argon annealing process would not only decrease the density of nucleation site, but also suppress the activity of nucleation site for the multilayer graphene growth. Therefore, large area and uniform monolayer graphene was obtained. The characterization of SEM. AFM and Raman analysis was also performed on either pristine graphene copper or transferred graphene on silicon oxide substrate.
  •  
68.
  • Mu, Wei, 1985, et al. (författare)
  • Tape-Assisted Transfer of Carbon Nanotube Bundles for Through-Silicon-Via Applications
  • 2015
  • Ingår i: Journal of Electronic Materials. - 0361-5235. ; 44, s. 2898-2907
  • Tidskriftsartikel (refereegranskat)abstract
    • Robust methods for transferring vertically aligned carbon nanotube (CNT) bundles into through-silicon vias (TSVs) are needed since CNT growth is not compatible with complementary metal–oxide–semiconductor (CMOS) technology due to the temperature needed for growing high-quality CNTs (∼700°C). Previous methods are either too complicated or not robust enough, thereby offering too low yields. Here, a facile transfer method using tape at room temperature is proposed and experimentally demonstrated. Three different kinds of tape, viz. thermal release tape, Teflon tape, and Scotch tape, were applied as the medium for CNT transfer. The CNT bundle was adhered to the tape through a flip-chip bonder, and the influence of the bonding process on the transfer results was investigated. Two-inch wafer-scale transfer of CNT bundles was realized with yields up to 97% demonstrated. After transfer, the use of several different polymers was explored for filling the gap between the transferred CNT bundle and the sidewalls of the TSV openings to improve the filling performance. The current–voltage characteristic of the CNT TSVs indicated good electrical performance, and by measuring the via resistance as a function of via thickness, contact resistances could be eliminated and an intrinsic CNT resistivity of 1.80 mΩ cm found.
  •  
69.
  • Nabiollahi, N., et al. (författare)
  • 3D computational fluid dynamics simulation of carbon nanotube based microchannel on-chip cooler
  • 2010
  • Ingår i: IMAPS Nordic Annual Conference 2010, Proceedings. ; , s. 44-47
  • Konferensbidrag (refereegranskat)abstract
    • Cooling of microsystem electronic device is of great importance, according to increased heat dissipation based on Moore's law. Different solutions are proposed to overcome this issue. On-chip microchannel cooler implements micro-fabrication techniques to achieve large areas in small volume size by introducing micro channel CNT fins with smaller fin pitch. In this paper, a 3D model of this structure is simulated using computational fluid dynamics (CFD) in ANSYS® software, and effect of various parameters such as channel width and height is discussed to achieve an optimized cooling for this system.
  •  
70.
  • Nylander, Andreas, 1988, et al. (författare)
  • Covalent anchoring of carbon nanotube-based thermal interface materials using epoxy-silane monolayers
  • 2019
  • Ingår i: IEEE Transactions on Components, Packaging and Manufacturing Technology. - 2156-3950. ; 9:3, s. 427-433
  • Tidskriftsartikel (refereegranskat)abstract
    • With the ever increasing demand for improved thermal management solutions in modern electronic devices, carbon nanotubes (CNTs) have been suggested as a candidate material for thermal interface materials (TIMs). However, the interfacial resistance between CNTs and matching substrate is huge due to poor interaction at the interface. With the help of chemical functionalization, these materials can be exploited to their full potential in TIM applications. By utilizing the epoxy-silane-based monolayers, covalent anchoring can be obtained between the CNTs and target substrate in order to bridge the interface, where high resistances, otherwise, would arise. To adapt CNT arrays to the epoxy chemistry, the CNTs have subsequently been subjected to nitrogen plasma in order to activate them with amino groups. The thermal interfaces were measured, and the thermal resistance was found to be decreased by 5% in comparison with the reference samples.
  •  
Skapa referenser, mejla, bekava och länka
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy