11. |
- Couch, Fergus J, et al.
(författare)
-
Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
- 2016
-
Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
-
Tidskriftsartikel (refereegranskat)abstract
- Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
|
|
12. |
- Escala-Garcia, Maria, et al.
(författare)
-
Genome-wide association study of germline variants and breast cancer-specific mortality
- 2019
-
Ingår i: British Journal of Cancer. - : NATURE PUBLISHING GROUP. - 0007-0920 .- 1532-1827. ; 120:6, s. 647-657
-
Tidskriftsartikel (refereegranskat)abstract
- BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using similar to 10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P<5 x 10(-8). For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 x 10(-7), hazard ratio [HR] = 0.88, 95% confidence interval [ CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7: rs67918676 (BFDP = 11%, P = 1.38 x 10(-7), HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP <15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.
|
|
13. |
|
|
14. |
|
|
15. |
|
|
16. |
- Machiela, Mitchell J., et al.
(författare)
-
Characterization of Large Structural Genetic Mosaicism in Human Autosomes
- 2015
-
Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 96:3, s. 487-497
-
Tidskriftsartikel (refereegranskat)abstract
- Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 3 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
|
|
17. |
- Michailidou, Kyriaki, et al.
(författare)
-
Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer
- 2015
-
Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 47:4, s. 373-U127
-
Tidskriftsartikel (refereegranskat)abstract
- Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 x 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
|
|
18. |
|
|
19. |
- Shu, Xiang, et al.
(författare)
-
Associations of obesity and circulating insulin and glucose with breast cancer risk : a Mendelian randomization analysis
- 2019
-
Ingår i: International Journal of Epidemiology. - : OXFORD UNIV PRESS. - 0300-5771 .- 1464-3685. ; 48:3, s. 795-806
-
Tidskriftsartikel (refereegranskat)abstract
- Background: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. Methods: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. Results: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 x 10(-4)], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 x 10(-4)), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 x 10(-19)) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 x 10(-6)). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. Conclusions: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer.
|
|
20. |
|
|