SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gloyn Anna L.) "

Sökning: WFRF:(Gloyn Anna L.)

  • Resultat 21-24 av 24
  • Föregående 12[3]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Orho-Melander, Marju, et al. (författare)
  • GCKR : How genetic variation across the allelic spectrum influences protein function and metabolic traits in humans
  • 2016
  • Ingår i: The Genetics of Type 2 Diabetes and Related Traits: Biology, Physiology and Translation. - : Springer International Publishing. - 9783319015743 - 9783319015736 ; , s. 317-336
  • Bokkapitel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have generated considerable interest in glucokinase regulatory protein (GKRP; gene name GCKR) which is an inhibitor of hepatic glucokinase (GCK), an enzyme that plays a critical role in glucose update and disposal in liver. From the initial discovery of GCKR variants associated with triglyceride and glucose levels through the identification of pleiotropic associations with a wide variety of metabolic phenotypes, we have learned a great deal about the importance of GKRP as a critical node in hepatic metabolism. GKRP remains one of the few well-studied GWAS loci where attempts have been made to understand the functional as well as the phenotypic impact of genetic variants across the allelic spectrum. Given the interest in developing liver-specific glucokinase activators and small molecules which disrupt the GKRP:GCK interaction for the treatment of type 2 diabetes, these genetic insights provide a wealth of information regarding efficacy and potential adverse on-target effects in humans.
  •  
22.
  • Strawbridge, Rona J., et al. (författare)
  • Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 60:10, s. 2624-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS-We have conducted a meta-analysis of genome-wide association tests of similar to 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS-Nine SNPs at eight loci were associated with proinsulin levels (P < 5 x 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC3OA8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 x 10(-4)), improved beta-cell function (P = 1.1 x 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 x 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS-We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624-2634, 2011
  •  
23.
  • Thanabalasingham, Gaya, et al. (författare)
  • Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile
  • 2013
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 62:4, s. 1329-1337
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent genome-wide association study identified hepatocyte nuclear factor 1-alpha (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MOD?) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCE)-MODY (n = 118), hepatocyte nuclear factor 4-alpha (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic >= 0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction.
  •  
24.
  • Travers, Mary E., et al. (författare)
  • Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X. ; 62:3, s. 987-992
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ10T1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ10T1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development. Diabetes 62:987-992, 2013
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-24 av 24
  • Föregående 12[3]

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy