41. |
- Zhan, Haoyu, et al.
(författare)
-
Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses
- 2020
-
Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 52:6, s. 572-
-
Tidskriftsartikel (refereegranskat)abstract
- Genome-wide analysis identifies 32 loci associated with breast cancer susceptibility, accounting for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype(1-3). To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P < 5.0 x 10(-8)), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate < 0.05). Five loci showed associations (P < 0.05) in opposite directions between luminal and non-luminal subtypes. In silico analyses showed that these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 54.2% for luminal A-like disease and 37.6% for triple-negative disease. The odds ratios of polygenic risk scores, which included 330 variants, for the highest 1% of quantiles compared with middle quantiles were 5.63 and 3.02 for luminal A-like and triple-negative disease, respectively. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
|
|
42. |
- Zhang, Mingfeng, et al.
(författare)
-
Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21
- 2016
-
Ingår i: OncoTarget. - : Impact Journals, LLC. - 1949-2553 .- 1949-2553. ; 7:41, s. 66328-66343
-
Tidskriftsartikel (refereegranskat)abstract
- Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10(-15)), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10(-9)) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10(-8)). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 (NR5A2), chr8q24.21 (MYC) and chr5p15.33 (CLPTM1L-TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal (n = 10) and tumor (n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10(-8)). This finding was validated in a second set of paired (n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10(-4)-2.0x10(-3)). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
|
|
43. |
- Adams, Charleen, et al.
(författare)
-
Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study.
- 2018
-
Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755.
-
Tidskriftsartikel (refereegranskat)abstract
- BACKGROUND: Whether associations between circulating metabolites and prostate cancer are causal is unknown. We report on the largest study of metabolites and prostate cancer (2,291 cases and 2,661 controls) and appraise causality for a subset of the prostate cancer-metabolite associations using two-sample Mendelian randomization (MR).MATERIALS AND METHODS: The case-control portion of the study was conducted in nine UK centres with men aged 50-69 years who underwent prostate-specific antigen (PSA) screening for prostate cancer within the Prostate testing for cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.RESULTS: Thirty-five metabolites were strongly associated with prostate cancer (p <0.0014, multiple-testing threshold). These fell into four classes: i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); ii) fatty acids and ratios; iii) amino acids; iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.CONCLUSIONS: We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.IMPACT: The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
|
|
44. |
- Ahearn, Thomas U., et al.
(författare)
-
Common variants in breast cancer risk loci predispose to distinct tumor subtypes
- 2022
-
Ingår i: Breast Cancer Research. - : Springer Nature. - 1465-5411 .- 1465-542X. ; 24:1
-
Tidskriftsartikel (refereegranskat)abstract
- BackgroundGenome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear.MethodsAmong 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes.ResultsEighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions.ConclusionThis report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
|
|
45. |
- Ahn, Jiyoung, et al.
(författare)
-
Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
- 2009
-
Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:19, s. 3749-57
-
Tidskriftsartikel (refereegranskat)abstract
- Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
|
|
46. |
- Barrdahl, Myrto, et al.
(författare)
-
A comprehensive analysis of polymorphic variants in steroid hormone and insulin-like growth factor-1 metabolism and risk of in situ breast cancer : Results from the Breast and Prostate Cancer Cohort Consortium
- 2018
-
Ingår i: International Journal of Cancer. - : John Wiley & Sons Inc.. - 0020-7136 .- 1097-0215. ; 142:6, s. 1182-1188
-
Tidskriftsartikel (refereegranskat)abstract
- We assessed the association between 1,414 single nucleotide polymorphisms (SNPs) in genes involved in synthesis and metabolism of steroid hormones and insulin-like growth factor 1, and risk of breast cancer in situ (BCIS), with the aim of determining whether any of these were disease specific. This was carried out using 1,062 BCIS cases and 10,126 controls as well as 6,113 invasive breast cancer cases from the Breast and Prostate Cancer Cohort Consortium (BPC3). Three SNPs showed at least one nominally significant association in homozygous minor versus homozygous major models. ACVR2A-rs2382112 (ORhom=3.05, 95%CI=1.72-5.44, Phom=1.47 × 10-4), MAST2-rs12124649 (ORhom=1.73, 95% CI =1.18-2.54, Phom=5.24 × 10-3), and INSR-rs10500204 (ORhom=1.96, 95% CI=1.44-2.67, Phom=1.68 × 10-5) were associated with increased risk of BCIS; however, only the latter association was significant after correcting for multiple testing. Furthermore, INSR-rs10500204 was more strongly associated with the risk of BCIS than invasive disease in case-only analyses using the homozygous minor versus homozygous major model (ORhom=1.78, 95% CI=1.30-2.44, Phom=3.23 × 10-4). The SNP INSR-rs10500204 is located in an intron of the INSR gene and is likely to affect binding of the promyelocytic leukemia (PML) protein. The PML gene is known as a tumor suppressor and growth regulator in cancer. However, it is not clear on what pathway the A-allele of rs10500204 could operate to influence the binding of the protein. Hence, functional studies are warranted to investigate this further.
|
|
47. |
- Barrdahl, Myrto, et al.
(författare)
-
Association of breast cancer risk loci with breast cancer survival
- 2015
-
Ingår i: International Journal of Cancer. - : Wiley-Blackwell. - 0020-7136 .- 1097-0215. ; 137:12, s. 2837-2845
-
Tidskriftsartikel (refereegranskat)abstract
- The survival of breast cancer patients is largely influenced by tumor characteristics, such as TNM stage, tumor grade and hormone receptor status. However, there is growing evidence that inherited genetic variation might affect the disease prognosis and response to treatment. Several lines of evidence suggest that alleles influencing breast cancer risk might also be associated with breast cancer survival. We examined the associations between 35 breast cancer susceptibility loci and the disease over-all survival (OS) in 10,255 breast cancer patients from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3) of which 1,379 died, including 754 of breast cancer. We also conducted a meta-analysis of almost 35,000 patients and 5,000 deaths, combining results from BPC3 and the Breast Cancer Association Consortium (BCAC) and performed in silico analyses of SNPs with significant associations. In BPC3, the C allele of LSP1-rs3817198 was significantly associated with improved OS (HRper-allele=0.70; 95% CI: 0.58-0.85; ptrend=2.84 x 10-4; HRheterozygotes=0.71; 95% CI: 0.55-0.92; HRhomozygotes=0.48; 95% CI: 0.31-0.76; p2DF=1.45 x 10-3). In silico, the C allele of LSP1-rs3817198 was predicted to increase expression of the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C). In the meta-analysis, TNRC9-rs3803662 was significantly associated with increased death hazard (HRMETA =1.09; 95% CI: 1.04-1.15; ptrend=6.6 x 10-4; HRheterozygotes=0.96 95% CI: 0.90-1.03; HRhomozygotes=1.21; 95% CI: 1.09-1.35; p2DF=1.25 x 10-4). In conclusion, we show that there is little overlap between the breast cancer risk single nucleotide polymorphisms (SNPs) identified so far and the SNPs associated with breast cancer prognosis, with the possible exceptions of LSP1-rs3817198 and TNRC9-rs3803662.What's new? Genetic factors are known to influence the risk of breast cancer, but inherited genetic variation may also affect disease prognosis and response to treatment. In this study, the we investigated whether single nucleotide polymorphisms (SNPs) that are known to be associated with breast cancer risk might also influence the survival of breast-cancer patients. While two of the investigated SNPs may influence survival, there was otherwise no indication that SNP alleles related to breast cancer risk also play a role in the survival of breast cancer patients.
|
|
48. |
- Barrdahl, Myrto, et al.
(författare)
-
Post-G WAS gene-environment interplay in breast cancer : results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79 000 women
- 2014
-
Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:19, s. 5260-5270
-
Tidskriftsartikel (refereegranskat)abstract
- We studied the interplay between 39 breast cancer (BC) risk SNPs and established BC risk (body mass index, height, age at menarche, parity, age at menopause, smoking, alcohol and family history of BC) and prognostic factors (TNM stage, tumor grade, tumor size, age at diagnosis, estrogen receptor status and progesterone receptor status) as joint determinants of BC risk. We used a nested case-control design within the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3), with 16 285 BC cases and 19 376 controls. We performed stratified analyses for both the risk and prognostic factors, testing for heterogeneity for the risk factors, and case-case comparisons for differential associations of polymorphisms by subgroups of the prognostic factors. We analyzed multiplicative interactions between the SNPs and the risk factors. Finally, we also performed a meta-analysis of the interaction ORs from BPC3 and the Breast Cancer Association Consortium. After correction for multiple testing, no significant interaction between the SNPs and the established risk factors in the BPC3 study was found. The meta-analysis showed a suggestive interaction between smoking status and SLC4A7-rs4973768 (P-interaction = 8.84 x 10(-4)) which, although not significant after considering multiple comparison, has a plausible biological explanation. In conclusion, in this study of up to almost 79 000 women we can conclusively exclude any novel major interactions between genome-wide association studies hits and the epidemiologic risk factors taken into consideration, but we propose a suggestive interaction between smoking status and SLC4A7-rs4973768 that if further replicated could help our understanding in the etiology of BC.
|
|
49. |
- Berndt, Sonja I, et al.
(författare)
-
Large-scale fine mapping of the HNF1B locus and prostate cancer risk
- 2011
-
Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3322-3329
-
Tidskriftsartikel (refereegranskat)abstract
- Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case-control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10(-8) with the most significant association with rs4430796 (P = 1.62 × 10(-24)). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r(2)= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10(-23)) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10(-8)); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10(-10)), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.
|
|
50. |
- Brazel, David M., et al.
(författare)
-
Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use
- 2019
-
Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 85:11, s. 946-955
-
Tidskriftsartikel (refereegranskat)abstract
- BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk.METHODS: We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci.RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals.CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.
|
|