11. 
 Ade, P. A. R., et al.
(författare)

XXI. The integrated SachsWolfe effect
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 This paper presents a study of the integrated SachsWolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the largescale timeevolving gravitational potential is probed from different perspectives. The CMB is crosscorrelated with different largescale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint crosscorrelation of the CMB with the tracers yields a detection at 4 sigma where most of the signaltonoise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at approximate to 3 sigma (through the ISWlensing bispectrum), which is similar to the detection level achieved by combining the crosscorrelation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the darkenergy parameters; in particular, we show that Omega(Lambda) is detected at more than 3 sigma. This crosscorrelation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMBLSS crosscorrelation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with Lambda CDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive crosscorrelation with these largescale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the largescale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.


12. 
 Adam, R., et al.
(författare)

Planck 2015 results IX. Diffuse component separation : CMB maps
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We present foregroundreduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperaturetopolarization leakage, analoguetodigital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still nonnegligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by highpass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higherorder statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of crossspectra and crosscorrelations, or stacking analyses. However, the amplitude of primordial nonGaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization Emodes. Moreover, excellent agreement is found regarding the lensing Bmode power spectrum, both internally among the various component separation codes and with the bestfit Planck 2015 Lambda cold dark matter model.


13. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XVIII. Background geometry and topology of the Universe
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highest quality fullsky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible nontrivial topology with a fundamental domain that intersects, or nearly intersects, the lastscattering surface (at comoving distance chi(rec)), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the lastscattering surface. The limits on the radius Ri of the largest sphere inscribed in the fundamental domain (at loglikelihood ratio Delta ln L > 5 relative to a simplyconnected flat Planck bestfit model) are: Ri > 0.97 chi(rec) for the T3 cubic torus; and Ri > 0.56 chi(rec) for the T1 slab. The limit for the T3 cubic torus from the matchedcircles search is numerically equivalent, Ri > 0.97 chi(rec) at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the nonphysical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of logevidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of 0.10 +/ 0.04 compared to the value of + 1 if the model were to be correct. In the physically motivated setting, where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (omega/H)(0) < 7.6 x 10(10) (95% CL).


14. 
 Ade, P. A. R., et al.
(författare)

Planck intermediate results XL. The SunyaevZeldovich signal from the Virgo cluster
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 596

Tidskriftsartikel (refereegranskat)abstract
 The Virgo cluster is the largest SunyaevZeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure that correlates well with the morphology observed from Xrays, but extends beyond the observed Xray signal. We find good agreement between the SZ signal (or Compton parameter, y(c)) observed by Planck and the expected signal inferred from Xray observations and simple analytical models. Owing to its proximity to us, the gas beyond the virial radius in Virgo can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of lowdensity plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii, while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and Xray data, in agreement with predictions. Finally, based on the combination of the same SZ and Xray data, we constrain the total amount of gas in Virgo. Under the hypothesis that the abundance of baryons in Virgo is representative of the cosmic average, we also infer a distance for Virgo of approximately 18 Mpc, in good agreement with previous estimates.


15. 
 Ade, P. A. R., et al.
(författare)

Planck intermediate results XXXIX. The Planck list of highredshift source candidates
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 596

Tidskriftsartikel (refereegranskat)abstract
 The Planck mission, thanks to its large frequency range and allsky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the highredshift Universe traced by their dust emission. A novel method, based on a componentseparation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck highz source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these highz candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of Txgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) Lcircle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first followup observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed starforming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty starforming galaxies, having colours consistent with being at z > 2, and may be considered as protocluster candidates. The PHZ provides an original sample, which is complementary to the Planck SunyaevZeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of highredshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively starforming phase at highz.


16. 
 Abazajian, Kevork, et al.
(författare)

CMBS4 : Forecasting Constraints on Primordial Gravitational Waves
 2022

Ingår i: Astrophysical Journal.  : American Astronomical Society.  0004637X . 15384357. ; 926:1

Tidskriftsartikel (refereegranskat)abstract
 CMBS4—the nextgeneration groundbased cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMBS4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a powerspectrumbased semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensortoscalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMBpolarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closedloop process, we couple this semianalytic tool with mapbased validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMBS4 using this process and the resulting establishment of the current reference design of the primordial gravitationalwave component of the Stage4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.

