SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mazzali P. A.) "

Sökning: WFRF:(Mazzali P. A.)

  • Resultat 61-62 av 62
  • Föregående 123456[7]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Rubin, Adam, et al. (författare)
  • TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 820:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with > 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) x 10(51) erg/(10 M-circle dot), and have a mean energy per unit mass of < E/M > = 0.85 x 10(51) erg/(10 M-circle dot), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of Ni-56 produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (Delta m(15)), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.
  •  
62.
  • Simon, Joshua D., et al. (författare)
  • Variable Sodium Absorption in a Low-extinction Type Ia Supernova
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 702, s. 1157-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from the Keck I Telescope and the Hobby-Eberly Telescope. The data span a time frame of approximately three months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na I D absorption lines strengthened significantly with time, indicating a total column density increase of ~2.5 × 1012 cm-2. The data limit the typical timescale for the variability to be more than 2 days but less than 10 days. The changes appear to be most prominent after maximum light rather than at earlier times when the ultraviolet flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H and K absorption lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two supernovae exhibiting variable absorption, SN 2007le is not highly reddened (E B - V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization calculations show that the data are consistent with a dense (107 cm-3) cloud or clouds of gas located ~0.1 pc (3 × 1017 cm) from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present possible evidence for narrow Hα emission associated with the SN, which will require deep imaging and spectroscopy at late times to confirm. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-62 av 62
  • Föregående 123456[7]

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy