21. 
 Aghanim, N., et al.
(författare)

Planck 2018 results VI. Cosmological parameters
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We present cosmological parameter results from the final fullmission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of largescale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the smallscale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatiallyflat 6parameter Lambda CDM cosmology having a powerlaw spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/ 0.001, baryon density Omega (b)h(2)=0.0224 +/ 0.0001, scalar spectral index n(s)=0.965 +/ 0.004, and optical depth tau =0.054 +/ 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/ 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the baseLambda CDM cosmology, the inferred (modeldependent) lateUniverse parameters are: Hubble constant H0=(67.4 +/ 0.5) km s(1) Mpc(1); matter density parameter Omega (m)=0.315 +/ 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/ 0.006. We find no compelling evidence for extensions to the baseLambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering singleparameter extensions) we constrain the effective extra relativistic degrees of freedom to be Neff=2.99 +/ 0.17, in agreement with the Standard Model prediction Neff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)< 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/ 0.002. Also combining with Type Ia supernovae (SNe), the darkenergy equation of state parameter is measured to be w(0)=1.03 +/ 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely powerlaw primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensortoscalar ratio r(0.002)< 0.06. Standard bigbang nucleosynthesis predictions for the helium and deuterium abundances for the baseCDM cosmology are in excellent agreement with observations. The Planck baseLambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combinedprobe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.


22. 
 Aghanim, N., et al.
(författare)

Planck 2018 results XII. Galactic astrophysics using polarized dust emission
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 Observations of the submillimetre emission from Galactic dust, in both total intensity I and polarization, have received tremendous interest thanks to the Planck fullsky maps. In this paper we make use of such fullsky maps of dust polarized emission produced from the third public release of Planck data. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present fullsky maps of the dust polarization fraction p, polarization angle psi, and dispersion function of polarization angles ?. The joint distribution (onepoint statistics) of p and NH confirms that the mean and maximum polarization fractions decrease with increasing NH. The uncertainty on the maximum observed polarization fraction, (max) = 22.0(1.4)(+3.5) p max = 22 . 0  1.4 + 3.5 % at 353 GHz and 80 ' resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour between p and ? found earlier is seen to be present at high latitudes. This follows the ?proportional to p(1) relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties of p, psi, and ? for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map ?xp, looking for residual trends. While the polarization fraction p decreases by a factor of 34 between NH=10(20) cm(2) and NH=2x10(22) cm(2), out of the Galactic plane, this product ?xp only decreases by about 25%. Because ? is independent of the grain alignment efficiency, this demonstrates that the systematic decrease in p with NH is determined mostly by the magneticfield structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of ?xp with the dust temperature Td, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fraction p and low polarization angle dispersion ? tend, on the contrary, to have colder dust than lines of sight with low p and high ?. We also compare the Planck thermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of the Planck beam. The two polarization emissiontoextinction ratios, RP/p and RS/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction, p(V)/E(BV), of 13% at high Galactic latitude, compatible with the polarization fraction p approximate to 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.


23. 
 Aghanim, N., et al.
(författare)

Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
 2017

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 607

Tidskriftsartikel (refereegranskat)abstract
 The six parameters of the standard Lambda CDM model have bestfit values derived from the Planck temperature power spectrum that are shifted somewhat from the bestfit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmicvariance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in bestfit values between a WMAPlike large angularscale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angularscale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/ 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {1.7, 2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to nonlensing effects; the only exception is tau, which, at fixed A(s)e(2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, what is it about the power spectrum at l < 800 that leads to somewhat different bestfit parameters than come from the full l range? We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 bestfit parameters shift significantly towards the l < 2500 bestfit parameters. In contrast, including l < 30, this previously noted lowl deficit drives ns up and impacts parameters correlated with ns, such as omega(m) and H0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatorylike set of highl residuals and the deficit in lowl power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.


24. 
 Akrami, Y., et al.
(författare)

Planck 2018 results X. Constraints on inflation
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/ 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensortoscalar ratio, r(0.002)< 0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)< 0.056. In the framework of standard singlefield inflationary models with Einstein gravity, these results imply that: (a) the predictions of slowroll models with a concave potential, V(phi) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the nonparametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(1)k less than or similar to 0.2 Mpc(1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the nonadiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matterbaryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scaledependent dipolar modulation. All these findings support the key predictions of the standard singlefield inflationary models, which will be further tested by future cosmological observations.


25. 
 Akrami, Y., et al.
(författare)

Planck intermediate results LII. Planet flux densities
 2017

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 607

Tidskriftsartikel (refereegranskat)abstract
 Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness timevariability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of beta(ring) = 2 : 30 +/ 0 : 03 over the 301000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarizationsensitive detectors (100353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the PlanckHFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of PlanckHFI detectors at about the threepercent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mmwavelength range to crosscalibrate against Planck and improve models of radiative transport used in planetary science.


26. 
 De Zotti, G., et al.
(författare)

Exploring cosmic origins with CORE : Extragalactic sources in cosmic microwave background maps
 2018

Ingår i: Journal of Cosmology and Astroparticle Physics.  : IOP Publishing.  14757516. ; :4

Tidskriftsartikel (refereegranskat)abstract
 We discuss the potential of a next generation spaceborne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Mediumsize mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed highz galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via followup observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of highz galaxy protoclusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and submm wavelengths, respectively.


27. 
 Di Valentino, E., et al.
(författare)

Exploring cosmic origins with CORE : Cosmological parameters
 2018

Ingår i: Journal of Cosmology and Astroparticle Physics.  : IOP Publishing.  14757516. ; :4

Tidskriftsartikel (refereegranskat)abstract
 We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for mediumsized mission proposals (M5). Here we report the results from our presubmission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ACDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ACDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the postCORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as similar to 10(7) as compared to Planck 2015, and 10(5) with respect to Planck 2015 + future BAO measurements.


28. 
 Finelli, F., et al.
(författare)

Exploring cosmic origins with CORE : Inflation
 2018

Ingår i: Journal of Cosmology and Astroparticle Physics.  : IOP Publishing.  14757516. ; 2018:4

Tidskriftsartikel (refereegranskat)abstract
 We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a mediumsize mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series Exploring Cosmic Origins with CORE. We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensortoscalar ratio down to the 10(3) level, to chart the landscape of single field slowroll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiationmatter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial nonGaussianities down to the f(NL)(local) < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.


29. 
 Aghanim, N., et al.
(författare)

Planck 2018 results III. High Frequency Instrument data processing and frequency maps
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using PlanckHFI data. This paper presents an extensive analysis of systematic effects, including the use of endtoend simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100353 GHz reduces intensitytopolarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 mu K, an accuracy of order 10(4). This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main highfrequency foregrounds by extracting the bandpassmismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Endtoend simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analoguetodigital convertor nonlinearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10(4) level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10(3) level.


30. 
 Aghanim, N., et al.
(författare)

Planck 2018 results VIII. Gravitational lensing
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5 sigma to 9 sigma. Combined with temperature, lensing is detected at 40 sigma. We present an extensive set of tests of the robustness of the lensingpotential power spectrum, and construct a minimumvariance estimator likelihood over lensing multipoles 8 <= L <= 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the Lambda CDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains (8)Omega (0.25)(m) = 0.589 +/ 0.020 sigma 8 Omega m 0.25 = 0.589 +/ 0.020 (1 sigma errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, sigma (8)=0.811 +/ 0.019, H0 = 67.9(1.3)(+1.2) km s(1) Mpc(1) H 0 = 67 . 9  1.3 + 1.2 .> km s  1 . Mpc  1 , and Omega (m) = 0.303(0.018)(+0.016) Omega m = 0 . 303  0.018 + 0.016 . Combining with Planck CMB power spectrum data, we measure sigma (8) to better than 1% precision, finding sigma (8)=0.811 +/ 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in sigma (8)Omega (m) space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensingonly parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of highredshift matter, we make a combined Planckonly estimate of the lensing potential over 60% of the sky with considerably more smallscale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensinginduced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.

