SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paternoster Lavinia) "

Sökning: WFRF:(Paternoster Lavinia)

  • Resultat 11-20 av 24
  • Föregående 1[2]3Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.
  • 2016
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
12.
  • Lu, Yingchang, et al. (författare)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk.
  • 2016
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
13.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
14.
  • Okbay, Aysu, et al. (författare)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 533:7604, s. 539-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample(1,2) of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
15.
  • Paternoster, Lavinia, et al. (författare)
  • Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure.
  • 2013
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10⁻¹⁴; LOC285735, rs271170, p = 2.7×10⁻¹²; OPG, rs7839059, p = 1.2×10⁻¹⁰; and ESR1/C6orf97, rs6909279, p = 1.1×10⁻⁹). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10⁻⁹). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60-0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic variant in the RANKL locus influences cortical vBMD, at least partly, via effects on cortical porosity, and that a genetic variant in the FMN2/GREM2 locus influences GREM2 expression in osteoblasts and thereby trabecular number and thickness as well as fracture risk.
  •  
16.
  • Paternoster, Lavinia, et al. (författare)
  • Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone.
  • 2010
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 6:11, s. e1001217-
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMD(C)) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMD(C), as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMD(C) associations that had p<1×10(-5) in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMD(C) in all cohorts (overall p = 2×10(-14), n = 5739). Each minor allele was associated with a decrease in BMD(C) of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males -6.77mg/cm(3) per C allele, p = 2×10(-6); females -2.79 mg/cm(3) per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development.
  •  
17.
  • Paternoster, Lavinia, et al. (författare)
  • Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis.
  • 2012
  • Ingår i: Nature genetics. - 1546-1718. ; 44:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Atopic dermatitis (AD) is a commonly occurring chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing atopic dermatitis are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 affected individuals and 20,565 controls from 16 population-based cohorts and then examined the ten most strongly associated new susceptibility loci in an additional 5,419 affected individuals and 19,833 controls from 14 studies. Three SNPs reached genome-wide significance in the discovery and replication cohorts combined, including rs479844 upstream of OVOL1 (odds ratio (OR) = 0.88, P = 1.1 × 10(-13)) and rs2164983 near ACTL9 (OR = 1.16, P = 7.1 × 10(-9)), both of which are near genes that have been implicated in epidermal proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster at 5q31.1 (OR = 1.11, P = 3.8 × 10(-8)). We also replicated association with the FLG locus and with two recently identified association signals at 11q13.5 (rs7927894; P = 0.008) and 20q13.33 (rs6010620; P = 0.002). Our results underline the importance of both epidermal barrier function and immune dysregulation in atopic dermatitis pathogenesis.
  •  
18.
  • Perry, John R. B., et al. (författare)
  • Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche
  • 2014
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 514:7520, s. 92-
  • Tidskriftsartikel (refereegranskat)abstract
    • Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-causemortality(1). Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation(2,3), but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 x 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
  •  
19.
  • Ried, Janina S, et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape.
  • 2016
  • Ingår i: Nature communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
20.
  • Tyrrell, Jessica, et al. (författare)
  • Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight.
  • 2016
  • Ingår i: JAMA. - 1538-3598. ; 315:11, s. 1129-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Neonates born to overweight or obese women are larger and at higher risk of birth complications. Many maternal obesity-related traits are observationally associated with birth weight, but the causal nature of these associations is uncertain.To test for genetic evidence of causal associations of maternal body mass index (BMI) and related traits with birth weight.Mendelian randomization to test whether maternal BMI and obesity-related traits are potentially causally related to offspring birth weight. Data from 30,487 women in 18 studies were analyzed. Participants were of European ancestry from population- or community-based studies in Europe, North America, or Australia and were part of the Early Growth Genetics Consortium. Live, term, singleton offspring born between 1929 and 2013 were included.Genetic scores for BMI, fasting glucose level, type 2 diabetes, systolic blood pressure (SBP), triglyceride level, high-density lipoprotein cholesterol (HDL-C) level, vitamin D status, and adiponectin level.Offspring birth weight from 18 studies.Among the 30,487 newborns the mean birth weight in the various cohorts ranged from 3325 g to 3679 g. The maternal genetic score for BMI was associated with a 2-g (95% CI, 0 to 3 g) higher offspring birth weight per maternal BMI-raising allele (P = .008). The maternal genetic scores for fasting glucose and SBP were also associated with birth weight with effect sizes of 8 g (95% CI, 6 to 10 g) per glucose-raising allele (P = 7 × 10(-14)) and -4 g (95% CI, -6 to -2 g) per SBP-raising allele (P = 1×10(-5)), respectively. A 1-SD ( ≈ 4 points) genetically higher maternal BMI was associated with a 55-g higher offspring birth weight (95% CI, 17 to 93 g). A 1-SD ( ≈ 7.2 mg/dL) genetically higher maternal fasting glucose concentration was associated with 114-g higher offspring birth weight (95% CI, 80 to 147 g). However, a 1-SD ( ≈ 10 mm Hg) genetically higher maternal SBP was associated with a 208-g lower offspring birth weight (95% CI, -394 to -21 g). For BMI and fasting glucose, genetic associations were consistent with the observational associations, but for systolic blood pressure, the genetic and observational associations were in opposite directions.In this mendelian randomization study, genetically elevated maternal BMI and blood glucose levels were potentially causally associated with higher offspring birth weight, whereas genetically elevated maternal SBP was potentially causally related to lower birth weight. If replicated, these findings may have implications for counseling and managing pregnancies to avoid adverse weight-related birth outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 24
  • Föregående 1[2]3Nästa
Typ av publikation
tidskriftsartikel (24)
Typ av innehåll
refereegranskat (24)
Författare/redaktör
Hofman, Albert (14)
Evans, David M (13)
Uitterlinden, Andre ... (12)
Van Duijn, Cornelia ... (11)
Martin, Nicholas G. (11)
McCarthy, Mark I (11)
visa fler...
Mangino, Massimo (11)
Gieger, Christian (11)
Spector, Tim D. (11)
Boomsma, Dorret I. (10)
Hottenga, Jouke-Jan (10)
Lehtimäki, Terho (10)
Willemsen, Gonneke (10)
Eriksson, Johan G. (10)
Rivadeneira, Fernand ... (10)
Salomaa, Veikko (9)
Montgomery, Grant W. (9)
Deloukas, Panos (9)
Eriksson, Joel (9)
Kähönen, Mika (9)
Wilson, James F. (9)
Sørensen, Thorkild I ... (9)
Ring, Susan M (9)
Perola, Markus (8)
Campbell, Harry (8)
Rudan, Igor (8)
Ohlsson, Claes, 1965 (8)
Wareham, Nicholas J. (8)
Ahluwalia, Tarunveer ... (8)
Metspalu, Andres (8)
Wright, Alan F. (8)
Harris, Tamara B (8)
Smith, George Davey (8)
Lorentzon, Mattias, ... (7)
Raitakari, Olli T (7)
Melbye, Mads (7)
Teumer, Alexander (7)
Medland, Sarah E. (7)
Strachan, David P (7)
Linneberg, Allan (7)
Grarup, Niels (7)
Pedersen, Oluf (7)
Hansen, Torben (7)
Ridker, Paul M. (7)
Chasman, Daniel I. (7)
Rose, Lynda M (7)
Mohlke, Karen L (7)
Peters, Annette (7)
Jarvelin, Marjo-Riit ... (7)
Loos, Ruth J F (7)
visa färre...
Lärosäte
Göteborgs universitet (15)
Lunds universitet (10)
Umeå universitet (9)
Uppsala universitet (4)
Karolinska Institutet (3)
Örebro universitet (1)
visa fler...
Mittuniversitetet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy