SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tardocchi M) "

Sökning: WFRF:(Tardocchi M)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Lerche, E., et al. (författare)
  • Optimization of ICRH for core impurity control in JET-ILW
  • 2016
  • Ingår i: Nuclear Fusion. - JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. [Lerche, E.; Van Eester, D.; Crombe, K.; Kazakov, Y.; Krivska, A.; Ongena, J.] TEC Partner, Assoc EUROFUS Belgian State, LPP ERM KMS, Brussels, Belgium. [Lerche, E.; Jacquet, P.; Giroud, C.; Monakhov, I.; Casson, F. J.; Rimini, F.; Blackman, T.; Brix, M.; Challis, C.; Graham, M.; Kiptily, V.; Lennholm, M.; Lomas, P.; Maggi, C.; Mathews, G.; Mayoral, M. -L.; Santala, M.; Shaw, A.; Stamp, M.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Goniche, M.; Colas, L.; Fedorczak, N.; Joffrin, E.; Monier-Garbet, P.] Assoc EUROFUS CEA, IRFM, St Paul Les Durance, France. [Bobkov, V.; Angioni, C.; Hobirk, J.; Puetterich, T.; Reich, M.] EUROFUS Assoziat, Max Planck Inst Plasmaphys, Garching, Germany. [Baruzzo, M.] EUROFUS ENEA Assoc, Consorzio RFX, Padua, Italy. [Brezinsek, S.] TEC Partner, EUROFUS Assoziat, Forschungszentrum Juelich, Julich, Germany. [Czarnecka, A.] EUROFUS Assoc, IPPLM, Warsaw, Poland. [Eriksson, J.] Uppsala Univ, Dept Phys & Astron, Assoc EUROFUS VR, Uppsala, Sweden. [Graves, J. P.] Assoc EUROFUS Confederat Suisse, CRPP EPFL, Lausanne, Switzerland. [Gorini, G.; Mantica, P.; Nocente, M.; Tardocchi, M.; Valisa, M.] EUROFUS ENEA CNR Assoc, Inst Fis Plasma, Milan, Italy. [Johnson, T.] KTH, EES, Fus Plasma Phys, Assoc EUROFUS VR, Stockholm, Sweden. [Meneses, L.; Nave, M. F.; Nunes, I.] EUROFUS IST Assoc, Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Mlynar, J.; Petrzilka, V.] EUROFUS IPP CR Assoc, Inst Plasma Phys, Prague, Czech Republic. [Petravich, G.] EUROFUS Assoc, MTA Wigner FK RMI, Budapest, Hungary. [Solano, E. R.] EUROFUS Assoc, LNF CIEMAT, Madrid, Spain. [Solano, E. R.] Culham Sci Ctr, EUROfus PMU, Abingdon OX14 3DB, Oxon, England. [Sips, G.] Culham Sci Ctr, JET Exploitat Unit, Abingdon OX14 3DB, Oxon, England. [Tsalas, M.] EUROFUS Assoc, FOM Inst DIFFER, Nieuwegein, Netherlands. : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 56:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.
  •  
12.
  • Lerche, E., et al. (författare)
  • Optimizing ion-cyclotron resonance frequency heating for ITER : dedicated JET experiments
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 53:12, s. 124019-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.
  •  
13.
  •  
14.
  •  
15.
  • Mantsinen, M. J., et al. (författare)
  • Bulk Ion Heating with ICRF Waves in Tokamaks
  • 2015
  • Ingår i: RADIOFREQUENCY POWER IN PLASMAS. - : American Institute of Physics (AIP). - 9780735413368
  • Konferensbidrag (refereegranskat)abstract
    • Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without He-3 minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with He-3 minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T-i from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central He-3 ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/L-Ti of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the He-3 concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.
  •  
16.
  • Nocente, M., et al. (författare)
  • Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D-He-3 plasmas with the 3-ion radio-frequency heating scenario
  • 2020
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 60:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dedicated experiments to generate energetic D ions and D-(3) He fusion-born alpha particles were performed at the Joint European Torus (JET) with the ITER-like wall (ILW). Using the 3-ion D-(D-NBI)-(3) He radio frequency (RF) heating scenario, deuterium ions from neutral beam injection (NBI) were accelerated in the core of mixed D-(3) He plasmas to higher energies with ion cyclotron resonance frequency (ICRF) waves, in turn leading to a core-localized source of alpha particles. The fast-ion distribution of RF-accelerated D-NBI ions was controlled by varying the ICRF and NBI power (P-ICRF approximate to 4-6 MW, P-NBI approximate to 3-20 MW), resulting in rather high D-D neutron (approximate to 1x10(16) s(-1)) and D-(3) He alpha rates (approximate to 2x10(16) s(-1)) at moderate input heating power. Theory and TRANSP analysis shows that large populations of co-passing MeV-range D ions were generated using the D-(D-NBI)-(3) He 3-ion ICRF scenario. This important result is corroborated by several experimental observations, in particular gamma-ray measurements. The developed experimental scenario at JET provides unique conditions for probing several aspects of future burning plasmas, such as the contribution from MeV range ions to global confinement, but without introducing tritium. Dominant fast-ion core electron heating with T-i approximate to T-e and a rich variety of fast-ion driven Alfven eigenmodes (AEs) were observed in these D-(3) He plasmas. The observed AE activities do not have a detrimental effect on the thermal confinement and, in some cases, may be driven by the fusion born alpha particles. A strong continuous increase in neutron rate was observed during long-period sawteeth (>1 s), accompanied by the observation of reversed shear AEs, which implies that a non monotonic q profile was systematically developed in these plasmas, sustained by the large fast-ion populations generated by the 3-ion ICRF scenario.
  •  
17.
  • Van Eester, D., et al. (författare)
  • Enhancing the mode conversion efficiency in JET plasmas with multiple mode conversion layers
  • 2011
  • Ingår i: AIP Conf. Proc.. - 1551-7616 .- 0094-243X. - 9780735409781 ; , s. 301-308
  • Konferensbidrag (refereegranskat)abstract
    • The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in ( 3He)-D plasmas [2] and was recently tested in ( 3He)-H JET plasmas. The latter is an 'inverted' scenario, which differs significantly from the ( 3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a 'regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[ 3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.
  •  
18.
  • Van Eester, D., et al. (författare)
  • Minority and mode conversion heating in (He-3)-H JET plasmas
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 54:7, s. 074009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics.
  •  
19.
  •  
20.
  • Biel, W., et al. (författare)
  • Diagnostics for plasma control - : From ITER to DEMO
  • 2019
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 146:A, s. 465-472
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma diagnostic and control (D&C) system for a future tokamak demonstration fusion reactor (DEMO) will have to provide reliable operation near technical and physics limits, while its front-end components will be subject to strong adverse effects within the nuclear and high temperature plasma environment. The ongoing developments for the ITER D&C system represent an important starting point for progressing towards DEMO. Requirements for detailed exploration of physics are however pushing the ITER diagnostic design towards using sophisticated methods and aiming for large spatial coverage and high signal intensities, so that many front-end components have to be mounted in forward positions. In many cases this results in a rapid aging of diagnostic components, so that additional measures like protection shutters, plasma based mirror cleaning or modular approaches for frequent maintenance and exchange are being developed. Under the even stronger fluences of plasma particles, neutron/gamma and radiation loads on DEMO, durable and reliable signals for plasma control can only be obtained by selecting diagnostic methods with regard to their robustness, and retracting vulnerable front-end components into protected locations. Based on this approach, an initial DEMO D&C concept is presented, which covers all major control issues by signals to be derived from at least two different diagnostic methods (risk mitigation).
  •  
Skapa referenser, mejla, bekava och länka

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy