11. |
- Cheng, Shi-Ping, et al.
(författare)
-
Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger
- 2021
-
Ingår i: Horticulture Research. - : Springer Nature. - 2052-7276. ; 8:1
-
Tidskriftsartikel (refereegranskat)abstract
- Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.
|
|
12. |
- Eckstein, Brian J., et al.
(författare)
-
Processable High Electron Mobility pi-Copolymers via Mesoscale Backbone Conformational Ordering
- 2021
-
Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 31:15
-
Tidskriftsartikel (refereegranskat)abstract
- The synthesis and experimental/theoretical characterization of a new series of electron-transporting copolymers based on the naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block are reported. Comonomers are designed to test the emergent effects of manipulating backbone torsional characteristics, and density functional theory (DFT) analysis reveals the key role of backbone conformation in optimizing electronic delocalization and transport. The NBA copolymer conformational and electronic properties are characterized using a broad array of molecular/macromolecular, thermal, optical, electrochemical, and charge transport techniques. All NBA copolymers exhibit strongly aggregated morphologies with significant nanoscale order. Copolymer charge transport properties are investigated in thin-film transistors and exhibit excellent electron mobilities ranging from 0.4 to 4.5 cm(2) V-1 s(-1). Importantly, the electron transport efficiency correlates with the film mesoscale order, which emerges from comonomer-dependent backbone planarity and extension. These results illuminate the key NBA building block structure-morphology-bulk property design relationships essential for processable, electronics-applicable high-performance polymeric semiconductors.
|
|
13. |
- Ehret, Georg B., et al.
(författare)
-
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
- 2011
-
Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 478:7367, s. 103-109
-
Tidskriftsartikel (refereegranskat)abstract
- Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>= 140 mm Hg systolic blood pressure or >= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
|
|
14. |
- Meng, Pingping, et al.
(författare)
-
Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection
- 2018
-
Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 203, s. 263-270
-
Tidskriftsartikel (refereegranskat)abstract
- Aqueous film-forming foams (AFFFs) used in fire-fighting are one of the main contamination sources of perfluorooctane sulfonate (PFOS) to the subterranean environment, requiring high costs for remediation. In this study, a method that combined aeration and foam collection was presented to remove PFOS from a commercially available AFFF solution. The method utilized the strong surfactant properties of PFOS that cause it to be highly enriched at air-water interfaces. With an aeration flow rate of 75 mL/min, PFOS removal percent reached 96% after 2 h, and the PFOS concentration in the collected foam was up to 6.5 mmol/L, beneficial for PFOS recovery and reuse. Increasing the aeration flow rate, ionic strength and concentration of co-existing surfactant, as well as decreasing the initial PFOS concentration, increased the removal percents of PFOS by increasing the foam volume, but reduced the enrichment of PFOS in the foams. With the assistance of a co-existing hydrocarbon surfactant, PFOS removal percent was above 99.9% after aeration-foam collection for 2 h and the enrichment factor exceeded 8400. Aeration-foam collection was less effective for short-chain perfluoroalkyl substances due to their relatively lower surface activity. Aeration-foam collection was found to be effective for the removal of high concentrations of PFOS from AFFF-contaminated wastewater, and the concentrated PFOS in the collected foam can be reused.
|
|
15. |
- Meng, Pingping, et al.
(författare)
-
Role of the air-water interface in removing perfluoroalkyl acids from drinking water by activated carbon treatment
- 2020
-
Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 386
-
Tidskriftsartikel (refereegranskat)abstract
- Contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) is a worldwide problem. In this study, we for the first time revealed the role of the air-water interface in enhancing the removal of long-chain perfluoroalkyl carboxylic (PFCAs; CnF2n+1COOH, n >= 7) and perfluoroalkane sulfonic (PFSAs; CnF2n+1SO3H, n >= 6) acids, collectively termed as perfluoroalkyl acids (PFAAs), through combined aeration and adsorption on two kinds of activated carbon (AC). Aeration was shown to enhance the removal of long-chain PFAAs through adsorption at the air-water interface and subsequent adsorption of PFAA-enriched air bubbles to the AC. The removal of selected long-chain PFAAs was increased by 50-115 % with the assistance of aeration, depending on the perfluoroalkyl chain length. Aeration is more effective in enhancing long-chain PFAA removal as air-water interface adsorption increases with PFAA chain length due to higher surface activity. After removing adsorbed air bubbles by centrifugation, up to 80 % of the long-chain PFAAs were able to desorb from the sorbent, confirming the contribution of the air-water interface to the adsorption of PFAAs on AC. Aeration during AC treatment of water could enhance the removal of long-chain PFAAs, and improve the performance of AC during water treatment.
|
|
16. |
- Riera-Galindo, Sergi, et al.
(författare)
-
Impact of Singly Occupied Molecular Orbital Energy on the n-Doping Efficiency of Benzimidazole Derivatives
- 2019
-
Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:41, s. 37981-37990
-
Tidskriftsartikel (refereegranskat)abstract
- We investigated the impact of singly occupied molecular orbital (SOMO) energy on the n-doping efficiency of benzimidazole derivatives. By designing and synthesizing a series of new air-stable benzimidazole-based dopants with different SOMO energy levels, we demonstrated that an increase of the dopant SOMO energy by only similar to 0.3 eV enhances the electrical conductivity of a benchmark electron-transporting naphthalenediimide-bithiophene polymer by more than 1 order of magnitude. By combining electrical, X-ray diffraction, and electron paramagnetic resonance measurements with density functional theory calculations and analytical transport simulations, we quantitatively characterized the conductivity, Seebeck coefficient, spin density, and crystallinity of the doped polymer as a function of the dopant SOMO energy. Our findings strongly indicate that charge and energy transport are dominated by the (relative) position of the SOMO level, whereas morphological differences appear to play a lesser role. These results set molecular-design guidelines for next-generation n-type dopants.
|
|
17. |
- Shen, Qian, et al.
(författare)
-
The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis
- 2018
-
Ingår i: Molecular Plant. - : Cell Press. - 1674-2052 .- 1752-9867. ; 11:6, s. 776-788
-
Tidskriftsartikel (refereegranskat)abstract
- Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin.
|
|
18. |
|
|
19. |
- Sidén, Johan, 1975-, et al.
(författare)
-
Design of High-Directivity Wideband Microstrip Directional Coupler With Fragment-Type Structure
- 2015
-
Ingår i: IEEE transactions on microwave theory and techniques. - 0018-9480 .- 1557-9670. ; 63:12, s. 3962-3970
-
Tidskriftsartikel (refereegranskat)abstract
- A novel design for a microstrip wideband directional coupler is proposedby using fragment-type structures. The use of a fragment-type structuremay provide satisfactory flexibility and excellent performance. For agiven design space, a fragment-type wideband coupler can be designed byfirst gridding the space into fragment cells and then metallizing thefragment cells selected by a multi-objective optimization searchingalgorithm, such as a multi-objective evolutionary algorithm based ondecomposition combined with enhanced genetic operators. Fordemonstration, a 20-dB wideband microstrip directional coupler isdesigned and verified by test. A 45% bandwidth centered at 2 GHz hasbeen measured in terms of maximum variation of 0.5 dB in the 20-dBcoupling level. In the operation band, the designed coupler hasdirectivity above 37 dB, and a maximum directivity of 48 dB at 2 GHz. Inaddition, some technique aspects related to multi-objective optimizationsearching, such as effects of design space, control of coupling level,and efficiency consideration for optimization searching, are furtherdiscussed. Fragment-type structures may also be used to designhigh-performance wideband directional couplers of tight coupling level.
|
|
20. |
- Wang, Bin, et al.
(författare)
-
A primary estimate of global PCDD/F release based on the quantity and quality of national economic and social activities
- 2016
-
Ingår i: Chemosphere. - Oxford, United Kingdom : Elsevier. - 0045-6535 .- 1879-1298. ; 151, s. 303-309
-
Tidskriftsartikel (refereegranskat)abstract
- The correlations between polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) releases and factors relevant to human social-economic activities (HSEAs) were analyzed. The multiple linear regression model was successfully developed to estimate the total global PCDD/F release. The PCDD/F releases significantly correlated with population, area, GDP and GNI, suggesting that "quantity" of HSEAs have significantly contributed to the PCDD/F releases. On another aspect, advanced technologies are usually adopted in developed countries/regions, and hence reduce the PCDD/F release. The significant correlation between PCDD/F release and CO2 emission implies the potential of simultaneous reduction of CO2 emission and PCDD/F release. The total global PCDD/F release from 196 countries/regions was estimated to be 100.4 kg-TEQ yr(-1). The estimated annual PCDD/F release per unit area ranged from 0.007 to 28 mg-TEQ km(-2). Asia is estimated to have the highest PCDD/F release of 47.1 kg-TEQ yr(-1), almost half of the total world release. Oceania is estimated to have the smallest total release but the largest per-capita release. For the developed areas, such as Europe and North America, the PCDD/F release per unit GDP is lower, while for Africa, it is much higher.
|
|