SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abecasis Goncalo R.) "

Search: WFRF:(Abecasis Goncalo R.)

  • Result 51-60 of 68
Sort/group result
   
EnumerationReferenceCoverFind
51.
  • Lindgren, Cecilia M, et al. (author)
  • Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.
  • 2009
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:6, s. e1000508-
  • Journal article (peer-reviewed)abstract
    • To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
  •  
52.
  • Mahajan, Anubha, et al. (author)
  • Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus.
  • 2015
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
  •  
53.
  • Newton-Cheh, Christopher, et al. (author)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:6, s. 666-676
  • Journal article (peer-reviewed)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
54.
  • Peden, John F., et al. (author)
  • A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:4, s. 339-344
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified 11 common variants convincingly associated with coronary artery disease (CAD)(1-7), a modest number considering the apparent heritability of CAD(8). All of these variants have been discovered in European populations. We report a meta-analysis of four large genome-wide association studies of CAD, with similar to 575,000 genotyped SNPs in a discovery dataset comprising 15,420 individuals with CAD (cases) (8,424 Europeans and 6,996 South Asians) and 15,062 controls. There was little evidence for ancestry-specific associations, supporting the use of combined analyses. Replication in an independent sample of 21,408 cases and 19,185 controls identified five loci newly associated with CAD (P < 5 x 10(-8) in the combined discovery and replication analysis): LIPA on 10q23, PDGFD on 11q22, ADAMTS7-MORF4L1 on 15q25, a gene rich locus on 7q22 and KIAA1462 on 10p11. The CAD-associated SNP in the PDGFD locus showed tissue-specific cis expression quantitative trait locus effects. These findings implicate new pathways for CAD susceptibility.
  •  
55.
  • Prokopenko, Inga, et al. (author)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Journal article (peer-reviewed)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
56.
  • Wain, Louise V., et al. (author)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • In: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Journal article (peer-reviewed)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
57.
  • Damask, Amy, et al. (author)
  • Patients with High Genome-Wide Polygenic Risk Scores for Coronary Artery Disease May Receive Greater Clinical Benefit from Alirocumab Treatment in the Odyssey Outcomes Trial
  • 2020
  • In: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 141:8, s. 624-636
  • Journal article (peer-reviewed)abstract
    • Background: Alirocumab, an antibody that blocks proprotein convertase subtilisin/kexin type 9 (PCSK9), was associated with reduced major adverse cardiovascular events (MACE) and death in the ODYSSEY OUTCOMES trial. In this study, higher baseline LDL cholesterol (LDL-C) levels predicted greater benefit from alirocumab treatment. Recent studies indicate high polygenic risk scores (PRS) for coronary artery disease (CAD) identify individuals at higher risk who derive increased benefit from statins. Herein we perform post hoc analyses to determine whether high PRS for CAD identifies higher-risk individuals, independently from baseline LDLC and other known risk factors, who might derive greater benefit from alirocumab treatment. Methods: ODYSSEY OUTCOMES was a randomized, double-blind, placebo-controlled trial comparing alirocumab or placebo in 18,924 patients with acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin treatment. The primary endpoint (MACE) comprised death from CAD, nonfatal myocardial infarction, ischemic stroke, or unstable angina requiring hospitalization. A genome-wide PRS for CAD comprising 6,579,025 genetic variants was evaluated in 11,953 patients with available DNA samples. Analysis of MACE risk was performed in placebo treated patients while treatment benefit analysis was performed in all patients. Results: The incidence of MACE in the placebo group was related to PRS for CAD: 17.0% for high PRS patients (>90th percentile) and 11.4% for lower PRS patients (≤90th percentile) (p<0.001); this PRS relationship was not explained by baseline LDL-C or other established risk factors. Both the absolute and relative reduction of MACE by alirocumab compared to placebo was greater in high versus low PRS patients. There was an absolute reduction by alirocumab in high versus low PRS groups of 6.0% and 1.5%, respectively, and relative risk reduction by alirocumab of 37% in the high PRS group (hazard ratio [HR] 0.63; 95% confidence interval [CI] 0.46-0.86; p = 0.004) versus 13% reduction in the low PRS group (HR 0.87; 95% CI 0.78-0.98; p=0.022; interaction p = 0.04). Conclusions: A high PRS for CAD is associated with elevated risk for recurrent MACE after ACS, and larger absolute and relative risk reduction with alirocumab treatment, providing an independent tool for risk stratification and precision medicine.
  •  
58.
  • Dand, Nick, et al. (author)
  • Exome-wide association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare protective alleles in genes contributing to type I IFN signalling
  • 2017
  • In: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 26:21, s. 4301-4313
  • Journal article (peer-reviewed)abstract
    • Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have been identified, but few resolved to specific functional variants. In this study, we sought to identify common and rare psoriasis-associated gene-centric variation. Using exome arrays we genotyped four independent cohorts, totalling 11 861 psoriasis cases and 28 610 controls, aggregating the dataset through statistical meta-analysis. Single variant analysis detected a previously unreported risk locus at TNFSF15 (rs6478108; P = 1.50 x 10(-8), OR = 1.10), and association of common protein-altering variants at 11 loci previously implicated in psoriasis susceptibility. We validate previous reports of protective low-frequency protein-altering variants within IFIH1 (encoding an innate antiviral receptor) and TYK2 (encoding a Janus kinase), in each case establishing a further series of protective rare variants (minor allele frequency amp;lt; 0.01) via gene-wide aggregation testing (IFIH1: p(burden) = 2.53 x 10(-7), OR = 0.707; TYK2: p(burden) = 6.17 x 10(-4), OR = 0.744). Both genes play significant roles in type I interferon (IFN) production and signalling. Several of the protective rare and low-frequency variants in IFIH1 and TYK2 disrupt conserved protein domains, highlighting potential mechanisms through which their effect may be exerted.
  •  
59.
  • Kathiresan, Sekar, et al. (author)
  • Common variants at 30 loci contribute to polygenic dyslipidemia
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 56-65
  • Journal article (peer-reviewed)abstract
    • Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 x 10(-8)), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10(-15) for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
  •  
60.
  • Lenz, Tobias L., et al. (author)
  • Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases
  • 2015
  • In: Nature Genetics. - : Macmillan Publishers Ltd.. - 1061-4036 .- 1546-1718. ; 47:9, s. 1085-1090
  • Journal article (peer-reviewed)abstract
    • Human leukocyte antigen (HLA) genes confer substantial risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen-binding repertoires between a heterozygote's two expressed HLA variants might result in additional non-additive risk effects. We tested the non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (n(cases) = 5,337), type 1 diabetes (T1D; n(cases) = 5,567), psoriasis vulgaris (n(cases) = 3,089), idiopathic achalasia (n(cases) = 727) and celiac disease (ncases = 11,115). In four of the five diseases, we observed highly significant, non-additive dominance effects (rheumatoid arthritis, P = 2.5 x 10(-12); T1D, P = 2.4 x 10(-10); psoriasis, P = 5.9 x 10(-6); celiac disease, P = 1.2 x 10(-87)). In three of these diseases, the non-additive dominance effects were explained by interactions between specific classical HLA alleles (rheumatoid arthritis, P = 1.8 x 10(-3); T1D, P = 8.6 x 10(-27); celiac disease, P = 6.0 x 10(-100)). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (rheumatoid arthritis, 1.4%; T1D, 4.0%; celiac disease, 4.1%) beyond a simple additive model.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 51-60 of 68
Type of publication
journal article (68)
Type of content
peer-reviewed (68)
Author/Editor
Abecasis, Goncalo R. (53)
Boehnke, Michael (43)
Loos, Ruth J F (37)
McCarthy, Mark I (35)
Wareham, Nicholas J. (34)
Mohlke, Karen L (34)
show more...
Tuomilehto, Jaakko (34)
Groop, Leif (32)
Salomaa, Veikko (32)
Laakso, Markku (32)
Jackson, Anne U. (32)
Collins, Francis S. (31)
Luan, Jian'an (30)
Kuusisto, Johanna (29)
Lindgren, Cecilia M. (28)
Stefansson, Kari (27)
Gieger, Christian (27)
Willer, Cristen J (27)
Morris, Andrew P. (27)
Deloukas, Panos (26)
Langenberg, Claudia (26)
Thorleifsson, Gudmar (26)
Thorsteinsdottir, Un ... (26)
Esko, Tõnu (26)
Metspalu, Andres (25)
Palmer, Colin N. A. (25)
Frayling, Timothy M (25)
van Duijn, Cornelia ... (24)
Samani, Nilesh J. (24)
Boerwinkle, Eric (24)
Mangino, Massimo (23)
Barroso, Ines (23)
Hayward, Caroline (23)
Elliott, Paul (23)
Prokopenko, Inga (23)
Kathiresan, Sekar (22)
Sanna, Serena (22)
Zhang, Weihua (22)
Rudan, Igor (21)
Jarvelin, Marjo-Riit ... (21)
Mahajan, Anubha (21)
Munroe, Patricia B. (21)
Altshuler, David (21)
Morris, Andrew D (21)
Zeggini, Eleftheria (21)
Hveem, Kristian (21)
Schlessinger, David (21)
Bonnycastle, Lori L. (21)
Grallert, Harald (21)
Steinthorsdottir, Va ... (21)
show less...
University
Lund University (47)
Uppsala University (39)
Karolinska Institutet (31)
Umeå University (24)
University of Gothenburg (12)
Linköping University (5)
show more...
Stockholm University (4)
Högskolan Dalarna (2)
show less...
Language
English (68)
Research subject (UKÄ/SCB)
Medical and Health Sciences (65)
Natural sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view