SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alhalaweh Amjad) "

Sökning: WFRF:(Alhalaweh Amjad)

  • Resultat 21-30 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Chattoraj, Sayantan, et al. (författare)
  • Origin of Deteriorated Crystal Plasticity and Compaction Properties of a 1:1 Cocrystal between Piroxicam and Saccharin
  • 2014
  • Ingår i: Crystal Growth & Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; 14:8, s. 3864-3874
  • Tidskriftsartikel (refereegranskat)abstract
    • The 1:1 cocrystal between piroxicam and saccharin exhibits significantly deteriorated powder compaction properties compared to both coformers. The molecular origin of this effect is revealed by a systematic investigation of crystal mechanical properties, probed with nanoindentation, and crystal structure analysis. The order of bulk powder tabletability of the three materials is identical to that of single crystal plasticity (saccharin > piroxicam > cocrystal). The lowest plasticity of the cocrystal is confirmed by its highest crystal hardness and the highest yield strength. The low plasticity of the cocrystal is attributed to structural packing features that discourage plastic deformation. This work demonstrates that cocrystallization, even though it may be useful to improve pharmaceutically relevant properties, must be carefully evaluated to avoid unexpected problems in formulation and drug product manufacturing due to compromised mechanical properties.
  •  
22.
  • Cho, Wonkyung, et al. (författare)
  • Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes
  • 2015
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 478:1, s. 288-296
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall aim of this study was to prepare a nasal powder formulation of salmon calcitonin (sCT) using an absorption enhancer to improve its bioavailability. In this work, powder formulations for nasal delivery of sCT were studied using various absorption enhancers and stabilizers. Powders were prepared by two different methods: conventional spray-drying (SD) and novel supercritical fluid-assisted spray-drying (SASD) to investigate the role of CO2 in the particle formation process. The prepared sCT powder formulations were characterized by several analyses; powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and the Fourier transform infrared (FT-IR) spectroscopy method. The particle size distribution was also evaluated. In vivo absorption tests were carried out in Sprague-Dawley rat using the prepared powder formulations, and the results were compared to those of raw sCT. Quantitative analysis by high-performance liquid chromatography (HPLC) indicated that sCT was chemically stable after both the SD and SASD processes. Results of PXRD, SEM, and FT-IR did not indicate a strong interaction or defragmentation of sCT. The in vivo absorption test showed that SD- and SASD-processed sCT powders increased the bioavailability of the drug when compared to the nasal administration of raw sCT. In addition, SASD-processed sCT exhibited higher nasal absorption when compared with SD-processed sCT in all formulations due to a reduction of particle size. The results from this study illustrate that the preparation of nasal powders using the SASD process could be a promising approach to improve nasal absorption of sCT.
  •  
23.
  • El Sayed, Mira, et al. (författare)
  • Impact of Simulated Intestinal Fluids on Dissolution, Solution Chemistry, and Membrane Transport of Amorphous Multidrug Formulations
  • 2021
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 18:11, s. 4079-4089
  • Tidskriftsartikel (refereegranskat)abstract
    • The solution behavior and membrane transport of multidrug formulations were herein investigated in a biorelevant medium simulating fasted conditions. Amorphous multidrug formulations were prepared by the solvent evaporation method. Combinations of atazanavir (ATV) and ritonavir (RTV) and felodipine (FDN) and indapamide (IPM) were prepared and stabilized by a polymer for studying their dissolution (under non-sink conditions) and membrane transport in fasted state simulated intestinal fluid (FaSSIF). The micellar solubilization by FaSSIF enhanced the amorphous solubility of the drugs to different extents. Similar to buffer, the maximum achievable concentration of drugs in combination was reduced in FaSSIF, but the extent of reduction was affected by the degree of FaSSIF solubilization. Dissolution studies of ATV and IPM revealed that the amorphous solubility of these two drugs was not affected by FaSSIF solubilization. In contrast, RTV was significantly affected by FaSSIF solubilization with a 30% reduction in the maximum achievable concentration upon combination to ATV, compared to 50% reduction in buffer. This positive deviation by FaSSIF solubilization was not reflected in the mass transport-time profiles. Interestingly, FDN concentrations remain constant until the amount of IPM added was over 1000 mu g/mL. No decrease in the membrane transport of FDN was observed for a 1:1 M ratio of FDN-IPM combination. This study demonstrates the importance of studying amorphous multidrug formulations under physiologically relevant conditions to obtain insights into the performance of these formulations after oral administration.
  •  
24.
  • El Sayed, Mira, et al. (författare)
  • Insights into Dissolution and Solution Chemistry of Multidrug Formulations of Antihypertensive Drugs
  • 2020
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 17:10, s. 4018-4028
  • Tidskriftsartikel (refereegranskat)abstract
    • Using fixed dose combinations of drugs instead of administering drugs separately can be beneficial for both patients and the health care system, but the current understanding of how multidrug formulations work at the molecular level is still in its infancy. Here, we explore dissolution, solubility, and supersaturation of various drug combinations in amorphous formulations. The effect of chemical structural similarity on combination behavior was investigated by using structurally related compounds of both drugs. The effect of polymer type on solution behavior was also evaluated using chemically diverse polymers. Indapamide (IPM) concentration decreased when combined with felodipine (FDN) or its analogues, which occurred even when the IPM solution was undersaturated. The extent of solubility decrease of FDN was less than that of IPM from the dissolution of an equimolar formulation of the drugs. No significant solubility decrease was observed for FDN at low contents of IPM which was also observed for other dihydropyridines, whereas FDN decreases at high contents of IPM. This was explained by the complex nature of the colloidal precipitates of the combinations which impacts the chemical potential of the drugs in solution at different levels. The maximum achievable concentration of FDN and IPM during dissolution of the polyvinylpyrrolidone-based amorphous solid dispersion was higher than the value measured with the hydroxypropyl methylcellulose acetate succinate-based formulation. This emphasizes the significance of molecular properties and chemical diversity of drugs and polymers on solution chemistry and solubility profiles. These findings may apply to drugs administered as a single dosage form or in separate dosage forms and hence need to be well controlled to assure effective treatments and patient safety.
  •  
25.
  • Gavini, Elisabetta, et al. (författare)
  • Influence of polymeric microcarriers on the in-vivo intranasal uptake of an anti-migraine drug for brain targeting
  • 2013
  • Ingår i: European journal of pharmaceutics and biopharmaceutics. - : Elsevier BV. - 0939-6411 .- 1873-3441. ; 83:2, s. 174-183
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to investigate the effect of polymeric microcarriers on the in-vivo intranasal uptake of an anti-migraine drug for brain targeting. Mucoadhesive powder formulations consisted of antimigraine drug, zolmitriptan, and chitosans (various molecular weights and types) or hydroxypropyl methylcellulose (HPMC). Their suitability for nasal administration was evaluated by in-vitro and ex-vivo mucoadhesion and permeation tests. The formulations based on chitosan glutamate (CG) or HPMC were tested in-vivo because they showed good mucoadhesive properties and altered the permeation rate of the drug. The in-vivo results from intravenous infusion and nasal aqueous suspension of the drug or nasal particulate powders were compared. The plasmatic AUC values obtained within 8 h following intravenous administration appeared about three times higher than those obtained by nasal administration, independent of the formulations. Zolmitriptan concentrations in the cerebrospinal fluid obtained from nasal and intravenous administrations were respectively 30 and 90 times lower than the concentrations of the drug in the blood. Thus, nasal administration potentiated the central zolmitriptan activity allowing a reduction of the drug peripheral levels, with respect to the intravenous administration. Among nasally administered formulations, CG microparticles showed the highest efficacy in promoting the central uptake of zolmitriptan within 1 h.
  •  
26.
  • Jung, Min-Sook, et al. (författare)
  • Bioavailability of indomethacin-saccharin cocrystals
  • 2010
  • Ingår i: Journal of Pharmacy and Pharmacology (JPP). - : Oxford University Press (OUP). - 0022-3573 .- 2042-7158. ; 62:11, s. 1560-1568
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmaceutical cocrystals are new solid forms with physicochemical properties that appear promising for drug product development. However, the in-vivo bioavailability of cocrystals has rarely been addressed. The cocrystal of indomethacin (IND), a Biopharmaceutical Classification System class II drug, with saccharin (SAC) has been shown to have higher solubility than IND at all pH. In this study, we aimed to evaluate the in-vitro dissolution and in-vivo bioavailability of IND-SAC cocrystals in comparison with IND in a physical mixture and the marketed product Indomee (R).MethodsScale-up of the cocrystals was undertaken using cooling batch crystallisation without seeding. The chemical and physical purity of the up-scaled material was verified using high-performance liquid chromatography, differential scanning calorimetry and powder X-ray diffraction. The IND-SAC cocrystals and IND plus SAC were mixed with lactose and the formulations were placed into gelatin capsules. In-vitro dissolution studies were then performed using the rotating basket dissolution method. The intrinsic dissolution rate of IND and IND-SAC cocrystals was also determined. Finally, a bioavailability study for the formulations was conducted in beagle dogs. The plasma samples were analysed using high-performance liquid chromatography and the pharmacokinetic data were analysed using standard methodologies.Key findingsThe bulk cocrystals (i.e. scaled-up material) were chemically and physically pure. The in-vitro dissolution rate of the cocrystals was higher than that of IND and similar to that of Indomee (R) at pH 7.4 and pH 1.2. The in-vivo bioavailability of the IND-SAC cocrystals in dogs was significantly higher (ANOVA, P < 0.05) than that of IND but not significantly different from Indomee (R) (ANOVA, P > 0.05).ConclusionsThe study indicates that the improved aqueous solubility of the cocrystals leads to improved bioavailability of IND. Thus, the cocrystals are a viable alternative solid form that can improve the dissolution rate and bioavailability of poorly soluble drugs.
  •  
27.
  • Kaialy, Waseem, et al. (författare)
  • Effect of carrier particle shape on dry powder inhaler performance
  • 2011
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 421:1, s. 12-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to characterise the aerosolisation properties of salbutamol sulphate (SS) from dry powder inhaler (DPI) formulations containing different carrier products. The difference in the elongation ratio (ER) of the different carriers was highlighted. Different set of carriers, namely commercial mannitol (CM), commercial lactose (CL), cooling crystallised mannitol (CCM), acetone crystallised mannitol (ACM) and ethanol crystallised mannitol (ECM) were used and inspected in terms of size, shape, density, crystal form, flowability, and in vitro aerosolisation performance using Multi Stage Liquid Impinger (MSLI) and Aerolizer® inhaler device. Solid-state and morphological characterization showed that CM product was in pure β-form having particles with smaller ER (CM: ER = 1.62 ± 0.04) whereas ACM and ECM mannitol particles were in pure α form with higher ER (ACM: ER = 4.83 ± 0.18, ECM: ER = 5.89 ± 0.19). CCM product crystallised as mixtures of β-form and δ-form and showed the largest variability in terms of particle shape, size, and DPI performance. Linear relationships were established showing that carrier products with higher ER have smaller bulk density (Db), smaller tap density (Dt), higher porosity (P), and poorer flow properties. In vitro aerosolisation assessments showed that the higher the ER of the carrier particles the greater the amounts of SS delivered to lower airway regions indicating enhanced DPI performance. Yet, DPI performance enhancement by increasing carrier ER reached a “limit” as increasing carrier ER from 4.83 ± 0.18 (ACM) to 5.89 ± 0.19 (ECM) did not significantly alter fine particle fraction (FPF) of SS. Also, carrier particles with higher ER were disadvantageous in terms of higher amounts of SS remained in inhaler device (drug loss) and deposited on throat. Linear relationship was established (r2 = 0.87) showing that the higher the carrier ER the lower the drug emission (EM) upon inhalation. Moreover, poorer flowability for carrier products with higher ER is disadvantageous in terms of DPI formulation dose metering and processing on handling scale. In conclusion, despite that using carrier particles with higher ER can considerably increase the amounts of drug delivered to lower airway regions; this enhancement is restricted to certain point. Also, other limitations should be taken into account including higher drug loss and poorer flowability.
  •  
28.
  • Kaialy, Waseem, et al. (författare)
  • Influence of lactose carrier particle size on the aerosol performance of budesonide from a dry powder inhaler
  • 2012
  • Ingår i: Powder Technology. - : Elsevier BV. - 0032-5910 .- 1873-328X. ; 227, s. 74-85
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate the effect of carrier particle size on properties of dry powder and its effect on dry powder inhaler (DPI) performance. Commercial α-lactose-monohydrate, a commonly used carrier in DPI formulations, was carefully sieved to obtain different lactose size fractions, namely Lac A (90–125 μm), Lac B (63–90 μm), Lac C (45–63 μm), Lac D (20–45 μm), and Lac E (< 20 μm). The lactose samples were analysed in terms of size, shape, solid state, density, and flowability. Lactose particles were blended with budesonide (< 5 μm) powder to generate five different formulations. These formulations were then evaluated in terms of budesonide-lactose adhesion properties, drug content homogeneity, and in vitro aerosolisation performance. The results demonstrated that lactose samples with smaller particle volume mean diameter have higher amorphous lactose content, higher true density (linear, r2 = 0.9932), higher surface smoothness (linear, r2 = 0.8752), smaller angularity (linear, r2 = 0.921), smaller bulk density, higher porosity (linear, r2 = 0.914), poorer flowability, and higher specific surface area. In general, the smaller the lactose particles the smaller are the budesonide-lactose adhesion properties. Budesonide formulated with smaller lactose particles exhibited smaller aerodynamic diameter and higher amounts of budesonide were delivered to lower stages of the impactor indicating improved DPI aerosolisation performance. However, the use of lactose particles with smaller volume mean diameter had a detrimental effect on budesonide content homogeneity and caused an increase in the amounts of budesonide deposited on oropharyngeal region. Therefore, particle size of the lactose within dry powder inhaler formulations should be selected carefully. Accordingly, higher drug aerosolisation efficiency of lactose particles with smaller size may have to be balanced due to considerations of other disadvantages including poorer flowability, reduced formulation stability, higher potential side effects, and higher dose variability.
  •  
29.
  • Maruyoshi, K., et al. (författare)
  • Identifying the intermolecular hydrogen-bonding supramolecular synthons in an indomethacin-nicotinamide cocrystal by solid-state NMR
  • 2012
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; 48:88, s. 10844-10846
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional 1H double-quantum and 14N- 1H & 1H- 13C heteronuclear magic-angle spinning (MAS) NMR spectra recorded at natural isotopic abundance identify specific intermolecular COOH⋯N arom and CH arom⋯OC hydrogen-bonding interactions in the solid-state structure of an indomethacin-nicotinamide cocrystal, thus additionally proving cocrystal formation.
  •  
30.
  • Mohammad, Mohammad Amin, et al. (författare)
  • Hansen solubility parameter as a tool to predict cocrystal formation
  • 2011
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 407:1-2, s. 63-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to investigate whether the miscibility of a drug and coformer, as predicted by Hansen Solubility Parameters (HSPs), can indicate cocrystal formation and guide cocrystal screening. It was also our aim to evaluate various HSPs-based approaches in miscibility prediction. HSPs for indomethacin (the model drug) and over thirty coformers were calculated according to the group contribution method. Differences in the HSPs between indomethacin and each coformer were then calculated using three established approaches, and the miscibility was predicted. Subsequently, differential scanning calorimetry was used to investigate the experimental miscibility and cocrystal formation. The formation of cocrystals was also verified using liquid-assisted grinding. All except one of the drug-coformers that were predicted to be miscible were confirmed experimentally as miscible. All tested theoretical approaches were in agreement in predicting miscibility. All systems that formed cocrystals were miscible. Remarkably, two new cocrystals of indomethacin were discovered in this study. Though it may be necessary to test this approach in a wide range of different coformer and drug compound types for accurate generalizations, the trends with tested systems were clear and suggest that the drug and coformer should miscible for cocrystal formation. Thus, predicting the miscibility of cocrystal components using solubility parameters can guide the selection of potential coformers prior to exhaustive cocrystal screening work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy