SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Besse C) "

Search: WFRF:(Besse C)

  • Result 21-30 of 49
Sort/group result
   
EnumerationReferenceCoverFind
21.
  • La Forgia, F., et al. (author)
  • Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
  •  
22.
  • Lara, L. M., et al. (author)
  • Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. During the most recent perihelion passage in 2009 of comet 67P/Churyumov-Gerasimenko (67P), ground-based observations showed an anisotropic dust coma where jet-like features were detected at similar to 1.3 AU from the Sun. The current perihelion passage is exceptional as the Rosetta spacecraft is monitoring the nucleus activity since March 2014, when a clear dust coma was already surrounding the nucleus at 4.3 AU from the Sun. Subsequently, the OSIRIS camera also witnessed an outburst in activity between April 27 and 30, and since mid-July, the dust coma at rh similar to 3.7-3.6 AU preperihelion is clearly non-isotropic, pointing to the existence of dust jet-like features. Aims. We aim to ascertain on the nucleus surface the origin of the dust jet-like features detected as early as in mid-July 2014. This will help to establish how the localized comet nucleus activity compares with that seen in previous apparitions and will also help following its evolution as the comet approaches its perihelion, at which phase most of the jets were detected from ground-based observations. Determining these areas also allows locating them in regions on the nucleus with spectroscopic or geomorphological distinct characteristics. Methods. Three series of dust images of comet 67P obtained with the Wide Angle Camera (WAC) of the OSIRIS instrument onboard the Rosetta spacecraft were processed with different enhancement techniques. This was made to clearly show the existence of jet-like features in the dust coma, whose appearance toward the observer changed as a result of the rotation of the comet nucleus and of the changing observing geometry from the spacecraft. The position angles of these features in the coma together with information on the observing geometry, nucleus shape, and rotation, allowed us to determine the most likely locations on the nucleus surface where the jets originate from. Results. Geometrical tracing of jet sources indicates that the activity of the nucleus of 67P gave rise during July and August 2014 to large-scale jet-like features from the Hapi, Hathor, Anuket, and Aten regions, confirming that active regions may be present on the nucleus localized at 60. northern latitude as deduced from previous comet apparitions. There are also hints that large-scale jets observed from the ground are possibly composed, at their place of origin on the nucleus surface, of numerous small-scale features.
  •  
23.
  •  
24.
  • Oklay, N., et al. (author)
  • Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. We interpret multicolor data from OSIRIS NAC for the remote-sensing exploration of comet 67P/Churyumov-Gerasimenko. Aims. We determine the most meaningful definition of color maps for the characterization of surface variegation with filters available on OSIRIS NAC. Methods. We analyzed laboratory spectra of selected minerals and olivine-pyroxene mixtures seen through OSIRIS NAC filters, with spectral methods existing in the literature: reflectance ratios, minimum band wavelength, spectral slopes, band tilt, band curvature, and visible tilt. Results. We emphasize the importance of reflectance ratios and particularly the relation of visible tilt vs. band tilt. This technique provides a reliable diagnostic of the presence of silicates. Color maps constructed by red-green-blue colors defined with the green, orange, red, IR, and Fe2O3 filters let us define regions that may significantly differ in composition.
  •  
25.
  • Oklay, N., et al. (author)
  • Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586
  • Journal article (peer-reviewed)abstract
    • Aims. We carried out an investigation of the surface variegation of comet 67P/Churyumov-Gerasimenko, the detection of regions showing activity, the determination of active and inactive surface regions of the comet with spectral methods, and the detection of fallback material. Methods. We analyzed multispectral data generated with Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) narrow angle camera (NAC) observations via spectral techniques, reflectance ratios, and spectral slopes in order to study active regions. We applied clustering analysis to the results of the reflectance ratios, and introduced the new technique of activity thresholds to detect areas potentially enriched in volatiles. Results. Local color inhomogeneities are detected over the investigated surface regions. Active regions, such as Hapi, the active pits of Seth and Ma'at, the clustered and isolated bright features in Imhotep, the alcoves in Seth and Ma'at, and the large alcove in Anuket, have bluer spectra than the overall surface. The spectra generated with OSIRIS NAC observations are dominated by cometary emissions of around 700 nm to 750 nm as a result of the coma between the comet's surface and the camera. One of the two isolated bright features in the Imhotep region displays an absorption band of around 700 nm, which probably indicates the existence of hydrated silicates. An absorption band with a center between 800-900 nm is tentatively observed in some regions of the nucleus surface. This absorption band can be explained by the crystal field absorption of Fe2+, which is a common spectral feature seen in silicates.
  •  
26.
  •  
27.
  • Thomas, N., et al. (author)
  • The geomorphology of (21) Lutetia : Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft
  • 2012
  • In: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 66:1, s. 96-124
  • Journal article (peer-reviewed)abstract
    • The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
28.
  • Tubiana, C., et al. (author)
  • Scientific assessment of the quality of OSIRIS images
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. OSIRIS, the scientific imaging system onboard the ESA Rosetta spacecraft, has been imaging the nucleus of comet 67P/Churyumov-Gerasimenko and its dust and gas environment since March 2014. The images serve different scientific goals, from morphology and composition studies of the nucleus surface, to the motion and trajectories of dust grains, the general structure of the dust coma, the morphology and intensity of jets, gas distribution, mass loss, and dust and gas production rates. Aims. We present the calibration of the raw images taken by OSIRIS and address the accuracy that we can expect in our scientific results based on the accuracy of the calibration steps that we have performed. Methods. We describe the pipeline that has been developed to automatically calibrate the OSIRIS images. Through a series of steps, radiometrically calibrated and distortion corrected images are produced and can be used for scientific studies. Calibration campaigns were run on the ground before launch and throughout the years in flight to determine the parameters that are used to calibrate the images and to verify their evolution with time. We describe how these parameters were determined and we address their accuracy. Results. We provide a guideline to the level of trust that can be put into the various studies performed with OSIRIS images, based on the accuracy of the image calibration.
  •  
29.
  • Vincent, J. -B, et al. (author)
  • Are fractured cliffs the source of cometary dust jets? : Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Journal article (peer-reviewed)abstract
    • Context: Dust jets (i.e., fuzzy collimated streams of cometary material arising from the nucleus) have been observed in situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986, and yet their formation mechanism remains unknown. Several solutions have been proposed involving either specific properties of the active areas or the local topography to create and focus the gas and dust flows. While the nucleus morphology seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller jets (a few meters wide) that connect directly to the nucleus surface.Aims: We monitored these jets at high resolution and over several months to understand what the physical processes are that drive their formation and how this affects the surface.Methods: Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets and linked them precisely to their sources on the nucleus.Results: We show here observational evidence that the northern hemisphere jets of comet 67P/Churyumov-Gerasimenko arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features and therefore of the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.
  •  
30.
  • Vincent, J. -B, et al. (author)
  • Summer fireworks on comet 67P
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S184-S194
  • Journal article (peer-reviewed)abstract
    • During its 2 yr mission around comet 67P/Churyumov-Gerasimenko, ESA's Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated with the activity of the nucleus, such as localized dust and gas jets. Here, we report on series of more energetic transient events observed during the 3 months surrounding the comet's perihelion passage in 2015 August. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotations. We identified three main dust plume morphologies associated with these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts' source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlate well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature; afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 21-30 of 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view