SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blanchot G.) "

Sökning: WFRF:(Blanchot G.)

  • Resultat 231-234 av 234
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
231.
  • Gonzalez-Sevilla, S., et al. (författare)
  • A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC
  • 2014
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 9, s. P02003-
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 x 10(34) cm(-2) s(-1). For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.
  •  
232.
  • Diez, S., et al. (författare)
  • A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC
  • 2014
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 9, s. P03012-
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools.
  •  
233.
  • Anghinolfi, F., et al. (författare)
  • Hadron beam test of a scintillating fibre tracker system for elastic scattering and luminosity measurement in ATLAS
  • 2007
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • A scintillating fibre tracker is proposed to measure elastic proton scattering at very small angles in the ATLAS experiment at CERN. The tracker will be located in so-called Roman Pot units at a distance of 240 m on each side of the ATLAS interaction point. An initial validation of the design choices was achieved in a beam test at DESY in a relatively low energy electron beam and using slow off-the-shelf electronics. Here we report on the results from a second beam test experiment carried out at CERN, where new detector prototypes were tested in a high energy hadron beam, using the first version of the custom designed front-end electronics. With a spatial resolution of 25 mu m an adequate tracking performance was obtained, under conditions which are similar to the situation at the LHC. In addition, the alignment method using so-called overlap detectors was studied and shown to have the expected precision.
  •  
234.
  • Mapelli, A., et al. (författare)
  • Development of a detector (ALFA) to measure the absolute LHC luminosity at ATLAS
  • 2008
  • Ingår i: Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications - Proceedings of the 10th Conference. - 9812819088 - 9789812819086 ; , s. 984-988
  • Konferensbidrag (refereegranskat)abstract
    • The ATLAS collaboration plans to determine the absolute luminosity of the CERN LHC at Interaction Point 1 by measuring the trajectory of protons elastically scattered at very small angles (μrad). A scintillating fibre tracker system called ALFA (Absolute Luminosity For ATLAS) is proposed for this measurement. Detector modules will be placed above and below the LHC beam axis in roman pot units at a distance of 240 m on cach side of the ATLAS interaction point. They allow the detectors to approach the beam axis to millimeter distance. Overlap detectors also based on the scintillating fibre technology, will measure the precise relative position of the two detector modules, Results obtained during beam tests at DESY and at CERN validate the detectors design and demonstrate the achievable resolution. We also report about radiation hardness studies of the scintillating fibres to estimate the lifetime of the ALFA system at different operating conditions of the LHC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 231-234 av 234

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy