SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borg Åke) "

Sökning: WFRF:(Borg Åke)

  • Resultat 61-70 av 395
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Brueffer, Christian, et al. (författare)
  • The Mutational Landscape of the SCAN-B Real-World Primary Breast Cancer Transcriptome
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Breast cancer is a disease of genomic alterations, of which the complete panorama of somatic mutations and how these relate to molecular subtypes and therapy response is incompletely understood. Within the Sweden Cancerome Analysis Network–Breast project (SCAN-B; ClinicalTrials.govNCT02306096), an ongoing study elucidating the tumor transcriptomic profiles for thousands of breast cancers prospectively, we developed an optimized pipeline for detection of single nucleotide variants and small insertions and deletions from RNA sequencing (RNA-seq) data, and profiled a large real-world population-based cohort of 3,217 breast tumors. We use it to describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population-based cohort of patients, and relate it to patient overall survival. We demonstrate that RNA-seq can be used to call mutations in important breast cancer genes such asPIK3CA,TP53, andERBB2, as well as the status of key molecular pathways and tumor mutational burden, and identify potentially druggable genes in 86.8% percent of tumors. To make this rich and growing mutational portraiture of breast cancer available for the wider research community, we developed an open source web-based application, the SCAN-B MutationExplorer, accessible athttp://oncogenomics.bmc.lu.se/MutationExplorer. These results add another dimension to the use of RNA-seq as a potential clinical tool, where both gene expression-based and gene mutation-based biomarkers can be interrogated simultaneously and in real-time within one week of tumor sampling.
  •  
62.
  • Brueffer, Christian, et al. (författare)
  • The mutational landscape of the SCAN‐B real‐world primary breast cancer transcriptome
  • 2020
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a disease of genomic alterations, of which the panorama of somatic mutations and how these relate to subtypes and therapy response is incompletely understood. Within SCAN‐B (ClinicalTrials.gov: NCT02306096), a prospective study elucidating the transcriptomic profiles for thousands of breast cancers, we developed a RNA‐seq pipeline for detection of SNVs/indels and profiled a real‐world cohort of 3,217 breast tumors. We describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population‐based cohort and relate it to patient survival. We demonstrate that RNA‐seq can be used to call mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the status of molecular pathways and mutational burden, and identify potentially druggable mutations in 86.8% of tumors. To make this rich dataset available for the research community, we developed an open source web application, the SCAN‐B MutationExplorer (http://oncogenomics.bmc.lu.se/MutationExplorer). These results add another dimension to the use of RNA‐seq as a clinical tool, where both gene expression‐ and mutation‐based biomarkers can be interrogated in real‐time within 1 week of tumor sampling.
  •  
63.
  • Calabrese, Claudia, et al. (författare)
  • Genomic basis for RNA alterations in cancer
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7793, s. 129-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
  •  
64.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
65.
  • Carlevaro-Fita, J, et al. (författare)
  • Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
  •  
66.
  • Carneiro, Ana, et al. (författare)
  • Indistinguishable genomic profiles and shared prognostic markers in undifferentiated pleomorphic sarcoma and leiomyosarcoma: different sides of a single coin?
  • 2009
  • Ingår i: Laboratory Investigation. - : Elsevier BV. - 1530-0307 .- 0023-6837. ; 89, s. 668-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Soft tissue sarcoma (STS) diagnostics and prognostics are challenging, particularly in highly malignant and pleomorphic subtypes such as undifferentiated pleomorphic sarcoma (UPS) and leiomyosarcoma (LMS). We applied 32K BAC arrays and gene expression profiling to 18 extremity soft tissue LMS and 31 extremity soft tissue UPS with the aim of identifying molecular subtype signatures and genomic prognostic markers. Both the gains/losses and gene expression signatures revealed striking similarities between UPS and LMS, which were indistinguishable using unsupervised hierarchical cluster analysis and significance analysis for microarrays. Gene expression analysis revealed just nine genes, among them tropomyosin beta, which were differentially expressed. Loss of 4q31 (encompassing the SMAD1 locus), loss of 18q22, and tumor necrosis were identified as independent predictors of metastasis in multivariate stepwise Cox regression analysis. Combined analysis applying loss of 4q31 and 18q22 and the presence of necrosis improved the area under receiver operating characteristic curve for metastasis prediction from 0.64 to 0.86. The extensive genetic similarities between extremity soft tissue UPS and LMS suggest a shared lineage of these STS subtypes and the new and independent genetic prognosticators identified hold promise for refined prognostic determination in high-grade, genetically complex STS.Laboratory Investigation advance online publication, 16 March 2009; doi:10.1038/labinvest.2009.18.
  •  
67.
  • Carvalho, Marcelo, et al. (författare)
  • Analysis of a set of missense, frameshift, and in-frame deletion variants of BRCA1
  • 2009
  • Ingår i: Mutation research. - : Elsevier BV. - 0027-5107 .- 1873-135X .- 1879-2871. ; 660:1-2, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline mutations that inactivate BRCA1 are responsible for breast and ovarian cancer susceptibility. One possible outcome of genetic testing for BRCA1 is the finding of a genetic variant of uncertain significance for which there is no information regarding its cancer association. This outcome leads to problems in risk assessment, counseling and preventive care. The purpose of the present study was to functionally evaluate seven unclassified variants of BRCA1 including a genomic deletion that leads to the in-frame loss of exons 16/17 (Delta exons 16/17) in the mRNA, an insertion that leads to a frameshift and an extended carboxy-terminus (5673insC), and five missense variants (K1487R, S1613C, M1652I, Q1826H and V1833M). We analyzed the variants using a functional assay based on the transcription activation property of BRCA1 combined with supervised learning computational models. Functional analysis indicated that variants S1613C, Q1826H, and M1652I are likely to be neutral, whereas variants V1833M, Delta exons 16/17, and 5673insC are likely to represent deleterious variants. In agreement with the functional analysis, the results of the computational analysis also indicated that the latter three variants are likely to be deleterious. Taken together, a combined approach of functional and bioinformatics analysis, plus structural modeling, can be utilized to obtain valuable information pertaining to the effect of a rare variant on the structure and function of BRCA1. Such information can, in turn, aid in the classification of BRCA1 variants for which there is a lack of genetic information needed to provide reliable risk assessment.
  •  
68.
  • Catucci, Irene, et al. (författare)
  • Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility
  • 2018
  • Ingår i: Genetics in Medicine. - : Elsevier BV. - 1098-3600. ; 20:4, s. 452-457
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeMonoallelic germ-line mutations in the BRCA1/FANCS, BRCA2/FANCD1 and PALB2/FANCN genes confer high risk of breast cancer. Biallelic mutations in these genes cause Fanconi anemia (FA), characterized by malformations, bone marrow failure, chromosome fragility, and cancer predisposition (BRCA2/FANCD1 and PALB2/FANCN), or an FA-like disease presenting a phenotype similar to FA but without bone marrow failure (BRCA1/FANCS). FANCM monoallelic mutations have been reported as moderate risk factors for breast cancer, but there are no reports of any clinical phenotype observed in carriers of biallelic mutations.MethodsBreast cancer probands were subjected to mutation analysis by sequencing gene panels or testing DNA damage response genes.ResultsFive cases homozygous for FANCM loss-of-function mutations were identified. They show a heterogeneous phenotype including cancer predisposition, toxicity to chemotherapy, early menopause, and possibly chromosome fragility. Phenotype severity might correlate with mutation position in the gene.ConclusionOur data indicate that biallelic FANCM mutations do not cause classical FA, providing proof that FANCM is not a canonical FA gene. Moreover, our observations support previous findings suggesting that FANCM is a breast cancer-predisposing gene. Mutation testing of FANCM might be considered for individuals with the above-described clinical features.Genetics in Medicine advance online publication, 24 August 2017; doi:10.1038/gim.2017.123.
  •  
69.
  • Cirenajwis, Helena, et al. (författare)
  • Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy.
  • 2015
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 6:14, s. 12297-12309
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanoma is currently divided on a genetic level according to mutational status. However, this classification does not optimally predict prognosis. In prior studies, we have defined gene expression phenotypes (high-immune, pigmentation, proliferative and normal-like), which are predictive of survival outcome as well as informative of biology. Herein, we employed a population-based metastatic melanoma cohort and external cohorts to determine the prognostic and predictive significance of the gene expression phenotypes. We performed expression profiling on 214 cutaneous melanoma tumors and found an increased risk of developing distant metastases in the pigmentation (HR, 1.9; 95% CI, 1.05-3.28; P=0.03) and proliferative (HR, 2.8; 95% CI, 1.43-5.57; P=0.003) groups as compared to the high-immune response group. Further genetic characterization of melanomas using targeted deep-sequencing revealed similar mutational patterns across these phenotypes. We also used publicly available expression profiling data from melanoma patients treated with targeted or vaccine therapy in order to determine if our signatures predicted therapeutic response. In patients receiving targeted therapy, melanomas resistant to targeted therapy were enriched in the MITF-low proliferative subtype as compared to pre-treatment biopsies (P=0.02). In summary, the melanoma gene expression phenotypes are highly predictive of survival outcome and can further help to discriminate patients responding to targeted therapy.
  •  
70.
  • Cmero, Marek, et al. (författare)
  • Inferring structural variant cancer cell fraction
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone's performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 395
Typ av publikation
tidskriftsartikel (369)
konferensbidrag (17)
annan publikation (5)
forskningsöversikt (2)
rapport (1)
proceedings (redaktörskap) (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (377)
övrigt vetenskapligt/konstnärligt (16)
populärvet., debatt m.m. (2)
Författare/redaktör
Borg, Åke (376)
Olsson, Håkan (94)
Staaf, Johan (87)
Vallon-Christersson, ... (67)
Ringnér, Markus (56)
Loman, Niklas (55)
visa fler...
Jönsson, Göran B (41)
Saal, Lao (37)
Bendahl, Pär Ola (36)
Ehinger, Anna (33)
Rydén, Lisa (31)
Fernö, Mårten (30)
Häkkinen, Jari (27)
Malmberg, Martin (27)
Larsson, Christer (26)
Baldetorp, Bo (22)
Nevanlinna, H (22)
Radice, P (20)
Easton, DF (19)
Gruvberger, Sofia (19)
Manoukian, S (18)
Thomassen, M. (18)
Chenevix-Trench, G (17)
Nilbert, Mef (17)
Nevanlinna, Heli (16)
Benitez, J. (16)
Peterlongo, P (16)
Hamann, U (16)
Andrulis, IL (16)
Couch, FJ (16)
Simard, J (16)
Lubinski, J (16)
Ehrencrona, Hans (16)
Antoniou, AC (16)
Johannsson, O (16)
Schmutzler, RK (15)
Meindl, A (15)
Höglund, Mattias (15)
Killander, Dick (15)
Olah, E (15)
McGuffog, L. (15)
Frost, D. (15)
Stoppa-Lyonnet, D. (15)
Offit, K. (15)
Montagna, M. (15)
Wappenschmidt, B. (15)
Engel, C. (15)
Neuhausen, SL (15)
Ingvar, Christian (15)
Nathanson, KL (15)
visa färre...
Lärosäte
Lunds universitet (380)
Karolinska Institutet (96)
Uppsala universitet (39)
Linköpings universitet (17)
Stockholms universitet (13)
Umeå universitet (12)
visa fler...
Göteborgs universitet (10)
Kungliga Tekniska Högskolan (7)
Sveriges Lantbruksuniversitet (2)
Örebro universitet (1)
Linnéuniversitetet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (391)
Svenska (3)
Polska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (376)
Naturvetenskap (22)
Samhällsvetenskap (6)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy