SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Clayton David F) "

Sökning: WFRF:(Clayton David F)

  • Resultat 11-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Axelsson, Erik, et al. (författare)
  • Natural selection in protein-coding genes expressed in avian brain
  • 2008
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 17:12, s. 3008-3017
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.
  •  
12.
  • Clayton, Aled, et al. (författare)
  • Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017
  • 2018
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. This report summarises the presentations and activities of the ISEV Workshop on extracellular vesicle biomarkers held in Birmingham, UK during December 2017. Among the key messages was broad agreement about the importance of biospecimen science. Much greater attention needs to be paid towards the provenance of collected samples. The workshop also highlighted clear gaps in our knowledge about pre-analytical factors that alter extracellular vesicles (EVs). The future utility of certified standards for credentialing of instruments and software, to analyse EV and for tracking the influence of isolation steps on the structure and content of EVs were also discussed. Several example studies were presented, demonstrating the potential utility for EVs in disease diagnosis, prognosis, longitudinal serial testing and stratification of patients. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.
  •  
13.
  • Griffith, Simon C., et al. (författare)
  • Variation in reproductive success across captive populations: Methodological differences, potential biases and opportunities
  • 2017
  • Ingår i: Ethology. - : Wiley. - 1439-0310 .- 0179-1613. ; 123:1, s. 1-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding of fundamental organismal biology has been disproportionately influenced by studies of a relatively small number of ‘model’ species extensively studied in captivity. Laboratory populations of model species are commonly subject to a number of forms of past and current selection that may affect experimental outcomes. Here, we examine these processes and their outcomes in one of the most widely used vertebrate species in the laboratory – the zebra finch (Taeniopygia guttata). This important model species is used for research across a broad range of fields, partly due to the ease with which it can be bred in captivity. However despite this perceived amenability, we demonstrate extensive variation in the success with which different laboratories and studies bred their subjects, and overall only 64% of all females that were given the opportunity, bred successfully in the laboratory. We identify and review several environmental, husbandry, life-history and behavioural factors that potentially contribute to this variation. The variation in reproductive success across individuals could lead to biases in experimental outcomes and drive some of the heterogeneity in research outcomes across studies. The zebra finch remains an excellent captive animal system and our aim is to sharpen the insight that future studies of this species can provide, both to our understanding of this species and also with respect to the reproduction of captive animals more widely. We hope to improve systematic reporting methods and that further investigation of the issues we raise will lead both to advances in our fundamental understanding of avian reproduction as well as to improvements in future welfare and experimental efficiency.
  •  
14.
  • Kim, Dae-Kyum, et al. (författare)
  • EVpedia: A Community Web Portal for Extracellular Vesicles Research
  • 2015
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 31:6, s. 933-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research.
  •  
15.
  • Nam, Kiwoong, et al. (författare)
  • Molecular evolution of genes in avian genomes
  • 2010
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906. ; 11:6, s. R68-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1: 1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results: We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an over-representation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions: Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between omega and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes.
  •  
16.
  • Naurin, Sara, et al. (författare)
  • A microarray for large-scale genomic and transcriptional analyses of the zebra finch (Taeniopygia guttata) and other passerines
  • 2008
  • Ingår i: Molecular Ecology Notes. - : Wiley. - 1471-8278 .- 1755-098X. ; 8:2, s. 275-281
  • Tidskriftsartikel (refereegranskat)abstract
    • The microarray technology has revolutionized biological research in the last decade. By monitoring the expression of many genes simultaneously, microarrays can elucidate gene function, as well as scan entire genomes for candidate genes encoding complex traits. However, because of high costs of sequencing and design, microarrays have largely been restricted to a few model species. Cross-species microarray (CSM) analyses, where microarrays are used for other species than the one they were designed for, have had varied success. We have conducted a CSM analysis by hybridizing genomic DNA from the common whitethroat (Sylvia communis) on a newly developed Affymetrix array designed for the zebra finch (Taeniopygia guttata), the Lund-zf array. The results indicate a very high potential for the zebra finch array to act as a CSM utility in other passerine birds. When hybridizing zebra finch genomic DNA, 98% of the gene representatives had higher signal intensities than the background cut-off, and for the common whitethroat, we found the equivalent proportion to be as high as 96%. This was surprising given the fact that finches and warblers diverged 25-50 million years ago, but may be explained by a relatively low sequence divergence between passerines (89-93%). Passerine birds are widely used in studies of ecology and evolution, and a zebra finch array that can be used for many species may have a large impact on future research directions.
  •  
17.
  • Xenopoulos, Marguerite A., et al. (författare)
  • How humans alter dissolved organic matter composition in freshwater: relevance for the Earth’s biogeochemistry
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 154:2, s. 323-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy