SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Colina L.) "

Sökning: WFRF:(Colina L.)

  • Resultat 11-20 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Perotti, G., et al. (författare)
  • Water in the terrestrial planet-forming zone of the PDS 70 disk
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 620:7974, s. 516-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial and sub-Neptune planets are expected to form in the inner (less than 10 AU) regions of protoplanetary disks1. Water plays a key role in their formation2,3,4, although it is yet unclear whether water molecules are formed in situ or transported from the outer disk5,6. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks7, similar to PDS 70, the first system with direct confirmation of protoplanet presence8,9. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (approximately 54 AU) planet-carved gap separating an inner and outer disk10,11. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2 and/or OH, and survival through water self-shielding5. This is also supported by the presence of CO2 emission, another molecule sensitive to ultraviolet photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir12. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.
  •  
12.
  • Ray, T. P., et al. (författare)
  • Outflows from the youngest stars are mostly molecular
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 622, s. 48-52
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of stars and planets is accompanied not only by the build-up of matter, namely accretion, but also by its expulsion in the form of highly supersonic jets that can stretch for several parsecs1,2. As accretion and jet activity are correlated and because young stars acquire most of their mass rapidly early on, the most powerful jets are associated with the youngest protostars3. This period, however, coincides with the time when the protostar and its surroundings are hidden behind many magnitudes of visual extinction. Millimetre interferometers can probe this stage but only for the coolest components3. No information is provided on the hottest (greater than 1,000 K) constituents of the jet, that is, the atomic, ionized and high-temperature molecular gases that are thought to make up the jet's backbone. Detecting such a spine relies on observing in the infrared that can penetrate through the shroud of dust. Here we report near-infrared observations of Herbig-Haro 211 from the James Webb Space Telescope, an outflow from an analogue of our Sun when it was, at most, a few times 104 years old. These observations reveal copious emission from hot molecules, explaining the origin of the 'green fuzzies'4-7 discovered nearly two decades ago by the Spitzer Space Telescope8. This outflow is found to be propagating slowly in comparison to its more evolved counterparts and, surprisingly, almost no trace of atomic or ionized emission is seen, suggesting its spine is almost purely molecular. Near-infrared imagery and spectroscopy from JWST of the Herbig-Haro 211 system, an analogue of the young Sun, reveals supersonic jets of hot molecules that can explain the origin of the 'green fuzzies' phenomenon.
  •  
13.
  • Rinaldi, P., et al. (författare)
  • MIDIS : Strong (H beta plus [OIII]) and Ha Emitters at Redshift z similar or equal to 7-8 Unveiled with JWST NIRCam and MIRI Imaging in the Hubble eXtreme Deep Field
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 952:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We make use of JWST medium-band and broadband NIRCam imaging, along with ultradeep MIRI 5.6 mu m imaging, in the Hubble eXtreme Deep Field to identify prominent line emitters at z similar or equal to 7-8. Out of a total of 58 galaxies at z similar or equal to 7-8, we find 18 robust candidates ( similar or equal to 31%) for (H beta + [O III]) emitters, based on their enhanced fluxes in the F430M and F444W filters, with EW0(H beta +[O III]) similar or equal to 87-2100 angstrom. Among these emitters, 16 lie in the MIRI coverage area and 12 exhibit a clear flux excess at 5.6 mu m, indicating the simultaneous presence of a prominent Ha emission line with EW0(H alpha) similar or equal to 200-3000 angstrom. This is the first time that H alpha emission can be detected in individual galaxies at z > 7. The Ha line, when present, allows us to separate the contributions of H beta and [O III] to the (H beta +[O III]) complex and derive Ha-based star formation rates (SFRs). We find that in most cases [O III]/ H beta > 1. Instead, two galaxies have [O III]/H beta < 1, indicating that the NIRCam flux excess is mainly driven by H beta. Most prominent line emitters are very young starbursts or galaxies on their way to/from the starburst cloud. They make for a cosmic SFR density log(10)( rho(SFRH alpha) (M-circle dot yr(-1) Mpc))similar or equal to - 2.351 3 which is about a quarter of the total value (log(10)( SFR (M-circle dot yr(-1) Mpc))similar or equal to - 1.761 3 ) at z similar or equal to 7-8. Therefore, the strong Ha emitters likely had a significant role in reionization.
  •  
14.
  • Gasman, Danny, et al. (författare)
  • MINDS Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) on board the James Webb Space Telescope (JWST) allows us to probe the inner regions of protoplanetary disks, where the elevated temperatures result in an active chemistry and where the gas composition may dictate the composition of planets forming in this region. The disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core, was observed with the MRS, and we examine its spectrum here.Aims. We aim to explain the observations and put the disk of Sz 98 in context with other disks, with a focus on the H2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations.Methods. In order to model the molecular features in the spectrum, the continuum was subtracted and local thermodynamic equilibrium (LTE) slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2O lines of different excitation conditions, and the slab model fits were performed individually per region.Results. We confidently detect CO, H2O, OH, CO2, and HCN in the emitting layers. Despite the plethora of H2O lines, the isotopo-logue (H2O)-O-18 is not detected. Additionally, no other organics, including C2H2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. Additionally, the OH and CO2 emission is relatively weak. It is likely that H2O is not significantly photodissociated, either due to self-shielding against the stellar irradiation, or UV shielding from small dust particles. While H2O is prominent and OH is relatively weak, the line fluxes in the inner disk of Sz 98 are not outliers compared to other disks.Conclusions. The relative emitting strength of the different identified molecular features points towards UV shielding of H2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.
  •  
15.
  • Tabone, B., et al. (författare)
  • A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:7, s. 805-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon is an essential element for life but how much can be delivered to young planets is still an open question. The chemical characterization of planet-forming disks is a crucial step in our understanding of the diversity and habitability of exoplanets. Very low-mass stars (less than 0.2 M⊙) are interesting targets because they host a rich population of terrestrial planets. Here we present the James Webb Space Telescope detection of abundant hydrocarbons in the disk of a very low-mass star obtained as part of the Mid-InfraRed Instrument mid-INfrared Disk Survey (MINDS). In addition to very strong and broad emission from C2H2 and its 13C12CH2 isotopologue, C4H2, benzene and possibly CH4 are identified, but water, polycyclic aromatic hydrocarbons and silicate features are weak or absent. The lack of small silicate grains indicates that we can look deep down into this disk. These detections testify to an active warm hydrocarbon chemistry with a high C/O ratio larger than unity in the inner 0.1 astronomical units (AU) of this disk, perhaps due to destruction of carbonaceous grains. The exceptionally high C2H2/CO2 and C2H2/H2O column density ratios indicate that oxygen is locked up in icy pebbles and planetesimals outside the water iceline. This, in turn, will have important consequences for the composition of forming exoplanets.
  •  
16.
  • Álvarez-Márquez, J., et al. (författare)
  • Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 < z < 10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines H alpha and [OII]0.5007 mu m at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Ha fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5-10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2M(circle dot) yr(-1), and stellar masses above 4-9 x 10(7) M-circle dot. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing similar to 6% and similar to 1% of the predicted FIRSTLIGHT population at the 6.5-7.5 and 7.5-8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 mu m emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2-0.02Z(circle dot) and different [OIII]88 mu m/[OIII]0.5007 mu m line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5-90 for H beta, [OIII]0.4959,0.5007 mu m, H alpha and HeI1.083 mu m emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 mu m. [SII]0.6717,0.6731 mu m, and [SIII] 0.9069,0.9532 mu m emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 mu m. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.
  •  
17.
  • Álvarez-Márquez, J., et al. (författare)
  • MIRI/JWST observations reveal an extremely obscured starburst in the z = 6.9 system SPT0311-58
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Luminous infrared starbursts in the early Universe are thought to be the progenitors of massive quiescent galaxies identified at redshifts 2–4. Using the Mid-IRfrared Instrument (MIRI) on board the James Webb Space Telescope (JWST), we present mid-infrared sub-arcsec imaging and spectroscopy of such a starburst: the slightly lensed hyper-luminous infrared system SPT0311-58 at z = 6.9. The MIRI IMager (MIRIM) and Medium Resolution Spectrometer (MRS) observations target the stellar (rest-frame 1.26 μm emission) structure and ionised (Paα and Hα) medium on kpc scales in the system. The MIRI observations are compared with existing ALMA far-infrared continuum and [C II]158μm imaging at a similar angular resolution. Even though the ALMA observations imply very high star formation rates (SFRs) in the eastern (E) and western (W) galaxies of the system, the Hα line is, strikingly, not detected in our MRS observations. This fact, together with the detection of the ionised gas phase in Paα, implies very high internal nebular extinction with lower limits (AV) of 4.2 (E) and 3.9 mag (W) as well as even larger values (5.6 (E) and 10.0 (W)) by spectral energy distribution (SED) fitting analysis. The extinction-corrected Paα lower limits of the SFRs are 383 and 230 M⊙ yr−1 for the E and W galaxies, respectively. This represents 50% of the SFRs derived from the [C II]158 μm line and infrared light for the E galaxy and as low as 6% for the W galaxy. The MIRIM observations reveal a clumpy stellar structure, with each clump having 3–5×109 M⊙ mass in stars, leading to a total stellar mass of 2.0 and 1.5×1010 M⊙ for the E and W galaxies, respectively. The specific star formation (sSFR) in the stellar clumps ranges from 25 to 59 Gyr−1, assuming a star formation with a 50–100 Myr constant rate. This sSFR is three to ten times larger than the values measured in galaxies of similar stellar mass at redshifts 6–8. Thus, SPT0311-58 clearly stands out as a starburst system when compared with typical massive star-forming galaxies at similar high redshifts. The overall gas mass fraction is Mgas/M∗ ∼ 3, similar to that of z ∼ 4.5–6 star-forming galaxies, suggesting a flattening of the gas mass fraction in massive starbursts up to redshift 7. The kinematics of the ionised gas in the E galaxy agrees with the known [C II] gas kinematics, indicating a physical association between the ionised gas and the cold ionised or neutral gas clumps. The situation in the W galaxy is more complex, as it appears to be a velocity offset by about +700 km s−1 in the Paα relative to the [C II] emitting gas. The nature of this offset and its reality are not fully established and require further investigation. The observed properties of SPT0311-58, such as the clumpy distribution at sub(kpc) scales and the very high average extinction, are similar to those observed in low- and intermediate-z luminous (E galaxy) and ultra-luminous (W galaxy) infrared galaxies, even though SPT0311-58 is observed only ∼800 Myr after the Big Bang. Such massive, heavily obscured clumpy starburst systems as SPT0311-58 likely represent the early phases in the formation of a massive high-redshift bulge, spheroids and/or luminous quasars. This study demonstrates that MIRI and JWST are, for the first time, able to explore the rest-frame near-infrared stellar and ionised gas structure of these galaxies, even during the Epoch of Reionization.
  •  
18.
  • Kankare, E., et al. (författare)
  • DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883
  • 2012
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 744:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0 ''.37 (180 pc) and 0 ''.79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.
  •  
19.
  •  
20.
  • Nohalez, A., et al. (författare)
  • Factors of importance when selecting sows as embryo donors
  • 2017
  • Ingår i: Animal. - : CAMBRIDGE UNIV PRESS. - 1751-7311 .- 1751-732X. ; 11:8, s. 1330-1335
  • Tidskriftsartikel (refereegranskat)abstract
    • The improvement in porcine embryo preservation and non-surgical embryo transfer (ET) procedures achieved in recent years represents essential progress for the practical use of ET in the pig industry. This study aimed to evaluate the effects of parity, weaning-to-estrus interval (WEI) and season on reproductive and embryonic parameters at day 6 after insemination of donor sows superovulated after weaning. The selection of donor sows was based on their reproductive history, body condition and parity. The effects of parity at weaning (2 to 3, 4 to 5 or 6 to 7 litters), season (fall, winter and spring), and WEI (estrus within 3 to 4 days), and their interactions on the number of corpus luteum, cysts in sows with cysts, number and quality of viable and transferable embryos, embryo developmental stage and recovery and fertilization rates were evaluated using linear mixed effects models. The analyses showed a lack of significant effects of parity, season, WEI or their interactions on any of the reproductive and embryonic parameters examined. In conclusion, these results demonstrate that fertilization rates and numbers of viable and transferable embryos collected at day 6 of the cycle from superovulated donor sows are not affected by their parity, regardless of the time of the year (from fall to spring) and WEI (3 or 4 days).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy